Two Elks (p. 75)

  $\displaystyle \Circled{1}\ \underline{O}. {A}$    
  % latex2html id marker 2937
$\displaystyle \Circled{2}\ \overrightarrow{2}(\und...
...rrightarrow{1}(\underline{5f}) \ensuremath{\char93 }: \ensuremath{\Box}u2\infty$    
  % latex2html id marker 2938
$\displaystyle \Circled{3}\ \overleftarrow{2 * 3}\!...
...1n}) \ensuremath{\char93 }: \ensuremath{\Box}1\infty ^{(2)}\ \ensuremath{\vert}$    
  $\displaystyle \Circled{4}\ \overleftarrow{u2\infty } \to 1$    
  % latex2html id marker 2940
$\displaystyle \Circled{5'}\ \overrightarrow{1}(\un...
...e{5f}) \ensuremath{\char93 }: \ell 1 \infty \to u1\infty \ \textrm{(over)} : N1$    
  % latex2html id marker 2941
$\displaystyle \Circled{6'}\ \overrightarrow{1}(\un...
...e{5n}) \ensuremath{\char93 }: \ell 1 \infty \to u1\infty \ \textrm{(over)} : N1$    
  % latex2html id marker 2942
$\displaystyle \Circled{7}\ \ensuremath{\Box}2\ \ensuremath{\textrm{I}}\ \textrm{tightly while rotating wrists back and forth}$    

The moves $\Circled{5'}$ and $\Circled{6'}$ are not traditional. They are loop-move equivalents to the Fifth and Sixth moves in Jayne's construction. Jayne comments: “The Fifth and Sixth movements of this figure exhibit what appear to be artificial methods, and yet it is difficult to see how the same results could be produced in any quicker or more simple procedure” (p. 79). To turn this problem on its head, we note that it is difficult to present the given moves using the string figure calculus.