Table of Notation

The following table shows what notation we use in this paper. This table is not meant to be used as an introduction to the string figure calculus. The reader is encouraged to consult Storer [8] for a more detailed discussion.

Notation Interpretation
$\underline{O}.X$ Opening $X$. Usually, $\underline{O}.A$ or $\underline{O}. {1}$.
: Continue the construction.
$\overrightarrow{F}$ The functor $F$ passes away (in the ulnar direction) over the strings.
$\underleftarrow{F}$ The functor $F$ passes towards (in the radial direction) under the strings.
$\mathpalette{\overarrow@\Rightarrowfill@}{F}$ Pass the functor $F$ to the right over any strings.
$\mathpalette{\underarrow@\Leftarrowfill@}{F}$ Pass the functor $F$ to the left under any strings.
$\topinset{s}{\scalebox{1.5}{$\bigtriangleup$}}{5pt}{-0.2pt}$ A small triangle in the figure.
$\diamondsuit$ A diamond inside a figure.
$\infty $ A loop surrounding a finger.
$< {F\infty}$ Rotate the $F$ loop half a turn towards.
$> {F\infty}$ Rotate the $F$ loop half a turn away.
% latex2html id marker 2702
$ \ensuremath{\char93 }$ Return hands to normal position.
% latex2html id marker 2704
$ \ensuremath{\vert}$ Separate the hands and extend the figure.
% latex2html id marker 2706
$ \ensuremath{\textrm{I}}$ Perform a final extension of the figure.
% latex2html id marker 2708
$ \ensuremath{\Box}$ Release the specified loops.
$F_1 \star F_2$ Use functors $F_1$ and $F_2$ to pinch the string.
=$\mid$3pt0pt Loops need not be kept distinct.
$\Circled{n}$ The $n$th move in Jayne's construction.
$\bigtriangledown$ A small triangle in the figure.
$\mathbb{P}$ The Pindiki extension.