Parker Adey October 30, 2025

The Mathematics of Braiding

Name:	

Q1. Take your three piece of string and braid the "standard 3-strand braid". If you get stuck, please ask Parker or the volunteers for help!

Instructions: Let's call the three strands Left, Center, and Right.

- 1. Pass the left strand over the center and leave it there.
- 2. Pass the right strand over the center and leave it there.
- 3. Repeat from Step 1.

Once you've completed your braid, answer the following:

(a) What do you notice?

(b) What do you wonder?

Q2. Draw a picture of your braid.

• • • • • • • • •

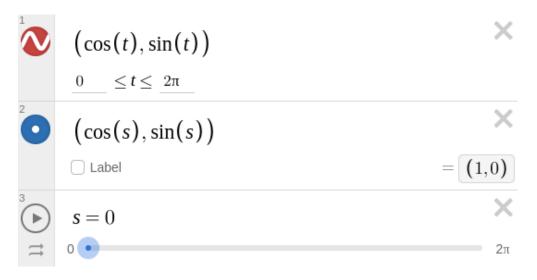
.

.

Mathematicians have a special language for describing braids. It was invented in the 1920s by Emil Artin, an Austrian-Armenian mathematician who worked at Princeton. In this language, a braid is written down crossing-by-crossing. The "standard 3-strand braid" becomes $(\sigma_1 \sigma_2^{-1})^n$.

For the rest of the workshop, we'll use computers to simulate braids. To log in to your computer, enter the following username:

and password:


Q3. Open a browser, navigate to https://www.desmos.com/ and graph the unit circle by entering:

$$(\cos(t), \sin(t))$$

Desmos will automatically create a parameter $0 \le t \le 1$. Adjust its bounds to $0 \le t \le 2$ pi.

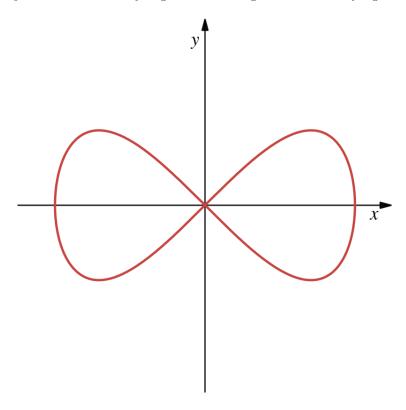
- 1. Add a slider s by typing s in a blank equation.
- 2. Set the slider bounds to $0 \le s \le 2 pi$.
- 3. In a new equation, create a sliding point $(\cos(s), \sin(s))$.
- 4. Set the slider to "Repeat in One Direction".

At this point, your Desmos panel should look like this:

If you click the play button, this will show a point gliding around the unit circle. We add a bit more structure.

5. Create a list:

$$N = \left[0, \frac{2 \text{ pi}}{3}, \frac{4 \text{ pi}}{3}\right]$$


6. Modify your sliding point to $(\cos(s+N), \sin(s+N))$.

At this point, you should have three points spinning around a circle.

https://www.desmos.com/calculator/vsoenyfxnu

Q4. And now, a bit of a math question. Our original equation $(\cos(t), \sin(t))$ describes a unit circle. Try to modify the y-coordinate so that you get the following beautiful infinity sign.

Your equation will be of the following format: $(\cos(t), \underline{\hspace{1cm}} \sin(t))$. Modify your Desmos equations $(\cos(t), \sin(t))$ and $(\cos(s+N), \sin(s+N))$ accordingly.

- Q5. We'll now make a 3D braid. In a new tab, navigate to: https://c3d.libretexts.org/CalcPlot3D
 - 1. Delete the default surface by clicking X.
 - 2. Click "Add to graph" \longrightarrow "Space curve r(t)."
 - 3. Set $x(t) = \cos(t)$, $y(t) = \cos(t)\sin(t)$, z = t/3.
 - 4. Repeat steps (2) and (3) with $x(t) = \cos(t + 2pi/3)$, $y(t) = \cos(t + 2pi/3)\sin(t + 2pi/3)$, z = t/3.
 - 5. Repeat steps (2) and (3) with $x(t) = \cos(t + 4pi/3)$, $y(t) = \cos(t + 4pi/3)\sin(t + 4pi/3)$, z = t/3.

You can play with the colouring of the paths by clicking the gear icon.

For more information about braiding, see:

- 1. Speiser, N. (1983). The manual of braiding.
- 2. Birman, J. S., & Brendle, T. E. (2005). Braids: a survey. In Handbook of knot theory (pp. 19-103).

Feel free to ask me about mathematics / braiding / university: parker.glynn.adey@utoronto.ca A quick e-mail: "Hey Parker! I was at your braiding workshop. I wanted to ask:" goes a long way!