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In this thesis we studied width-volume inequalities, bisecting surfaces in three spheres, and the planar

case of Larry Guth’s sponge problem. Our main result is a width-volume inequality for conformally non-

negatively Ricci curved manifolds. We obtain several estimates on the size of minimal hypersurfaces in

such manifolds. Concerning geometric subdivision and 3-spheres, we give a positive answer to a question

of Papasoglu . Regarding the sponge problem, we show that any open bounded Jordan measurable set

in the plane of small area admits an expanding embedding in to a strip of unit height. We also prove

that a generalization of the planar sponge problem is NP-complete. This thesis is partially based on

joint work with Ye. Liokumovich [17] and Z. Zhu [18].
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Chapter 1

Introduction

1.1 Preface

This thesis is concerned with the quantitative geometry of Riemannnian manifolds. To use Misha

Kapovich’s apt phrase, it is “geometric geometry” and studies geometric quantities like lengths and

areas. The three themes of the work are: width-volume inequalities, bisecting surfaces, and Larry

Guth’s sponge problem.

The main results of this thesis were obtained in two life changing collaborations. I am thankful

to Regina Rotman for suggesting and encouraging these projects among her students. For further ac-

knowledgements, of which there are many, see Section 1.5. The first collaboration was with Yevgeny

Liokumovich and resulted in Chapter 2 concerning width-volume inequalities and Ricci curvature. The

second collaboration was with Zhifei Zhu and resulted in Chapter 3 concerning bisecting surfaces. The

remaining material in this thesis was obtained while working on the sponge problem. Robert Young

listened patiently while I, somewhat quixotically, worked on the problem. In Chapter 4, I give a com-

putational hardness result for the problem and a solution to a related problem in the plane.

Chpt. 2 Width-Volume Inequalities describes joint work with Yevgeny Liokumovich on the rela-

tionship between width-volume inequalities and Ricci curvature [17].

Chpt. 3 Homological Filling and Bisection Area grew out of joint work with Zhifei Zhu on knot

theoretic metric obstructions to small width [18]. This chapter contains our result about coarsely

subdividing generic Riemannian 3-spheres. This work answered a question posed by Papasoglu [47].

Chpt. 4 Sponges and Width details work on the sponge problem. I answered a related problem in

the plane, and showed that the problem of detemining whether there is an expanding embedding

between two planar domains is NP-complete.
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1.2 Prelude

When I first started at the University of Toronto, Regina Rotman asked me to read Frankel and Katz’s

alluringly titled “The Morse Landscape of a Riemannian Disk” [16] about Riemannian 2-disks with

bumpy metrics. Some fellow geometry students, including Dominic Dotterrer, organized a seminar where

we read Guth and Gromov’s “Generalizations of the Kolmogorov-Barzdin Embedding Estimates” [28]

on thickly embedding complexes in euclidean space. These two articles lead to me take an interest in

the field of quantitative geometry and lead directly to the work in this thesis. Chapter 2 arose out of

trying to better understand “width”. The former article lead to the question we answered in Chapter 3.

The measure of complexity used in the latter article is strongly related to the work in Chapter 4.

Here is a single example which contains the germ of the projects in this thesis. We are going to look

at a result of Barzdin and Komologorov from the 70s. Motivated by speculation about the structure

of the brain, Barzdin and Kolmogorov investigated thick embeddings of graphs in to R3. Their model

for the brain was that neurons are balls and axons are tubes that go between the neurons. To measure

the complexity of a graph, or a brain, they thought to study the radius of the smallest ball in euclidean

space containing a thickened copy of the graph. This radius is a quantitative measure of complexity

which is related to width and sponges, both of which we discuss below. Consider a graph topologically

as a simplicial complex where each edge is homeomorphic to an interval. An embedding f : Γ → R3 is

1-thick if d(f(σi), f(σj)) ≥ 1 for any non-adjacent simplices σi and σj .

Theorem 1.2.1 (Barzdin-Kolmogorov [4]). There are constants 0 < c(d) < C(d) such that: If Γ is a

graph of degree d with N vertices then Γ admits a 1-thick embedding in to B3(R) for R ≤ C(d) ·N1/2.

Moreover, there are graphs of degree d with N vertices which require a ball of radius at least c(d) ·N1/2

to contain any 1-thick embedding in to R3.

To get a feel for the result, we are going to show that there are graphs which require large balls. We

are going to use some special graphs which will not appear in the body of the thesis, but whose general

properties inspired the results contained in this work. We say that a graph is a λ-expander if: for any

subset of the vertices S ⊂ V satisfying |S| ≤ |V |/2 one has that there are at least λ|S| edges from S to

its complement V \ S. For our purposes, an expander is a sparse graph which require many edges to be

crossed by any partition of its vertex set. It is a surprising fact that d-regular expanders exist for λ > 0.

We will blackbox the existence problem and suppose, without proof, that there are “λ-expanders”.

Suppose that a d-regular 1/10-expander with N vertices has a 1-thick embedding in to B3(R). We

estimate R. Generically there will be a plane Π such that half the vertices of Γ lie above the plane,

and half below. Cutting the graph according to this plane would give a partition of the graph in to

two parts with an equal number of vertices. Thus, by expansion, there are at least (1/10) · (1/2) · N ,

or roughly N , edges meeting Π. Since the embedding is 1-thick, the intersection Π ∩ B2(R) contains

roughly N unit disks. It follows that area(Π ∩ B3(R)) & N . Therefore, R & N1/2. Put plainly, an

expander graph requires a large ball to contain the image of any 1-thick embedding in to euclidean space

because expanders require that we cut many edges to partition their vertex sets in to two parts.

This result, and the idea behind it, got me interested in all sorts of things. Expander graphs can be

characterized by spectral estimates, and that lead to thinking about spectra and width in Chapter 2.

The notion of using the size of a bisecting surface to describe complexity lead to Chapter 3. The idea of

measuring the complexity of a thing by folding in to a ball lead to Chapter 4.
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1.3 Overview

We now give a detailed chapter by chapter overview of the thesis.

1.3.1 Width-Volume Inequalities

The width of a manifold measures the complexity of slicing the manifold into hypersurfaces. Let (Mn, g)

be a compact oriented Riemannian manifold. Using tools from geometric measure theory, one can

naturally metrize Zk(M) the space of k-cycles in M . A continuous (n − k)-dimensional family z :

Xn−k → Zk(M) of k-cycles sweeps out M if z assembles to the fundamental class of M under a certain

canonical gluing operation. The precise statement of the gluing operation is somewhat technical but one

can imagine an (n− k)-dimensional family of k-cycles gluing together to form a n-chain in M .

Definition 1.3.1. The k-width of (M, g) is Wk(M) = infz supp volk(zp) where z ranges over all sweep

outs of M by k-cycles and the supremum runs over all cycles in the family.

In this work we only deal with Wn−1(M) which we abbreviate to W(M). An important example of

a sweep out by (n−1)-cycles is obtained by taking the level sets of a smooth Morse function f : M → R.

One has that f−1(t) will be empty for |t| sufficiently large. Thus, the family of (n− 1)-cycles given by

zt = f−1(t) will start and end at 0 ∈ Zn−1(M). That is to say: the level sets of a Morse function produce

a loop in the space of (n− 1)-cycles. To get a sense of the gluing operation note that f−1([t− ε, t+ ε])

will be a n-chain of small volume with boundary zt−ε and zt+ε when ε is sufficiently small. Gluing the

levels sets together, using the intermediate n-chains, gives a n-cycle. Since f is Morse function, this

n-cycle represents the fundamental class of M .

If a family of (n − 1)-cycles assembles to the fundamental class of M then the family represents a

non-trivial loop in Zn−1(M). By applying a high dimensional analogue of curve shortening to such a

non-trivial loop we may find minimal hypersurfaces in M effectively. This technique was introduduced

by Pitts [48]. This is the approach of Chapter 2. This approach to controlling the size of minimal

surfaces using width is only useful if we can estimate width.

It is desirable to have estimates for width since it is difficult to explicitly compute width. Consider, for

a moment, the fact that (at present) the exact value of the width of the unit cube remains unknown [30].

Consequently, we seek to estimate width in terms of quantities which are easier to compute such as

volume. The main inspiration for the results in Chapters 2 and 4 of this thesis was the following width

estimate:

Theorem 1.3.1 (Guth’s Width-Volume Inequality). If U ⊂ Rn is open and bounded then:

Wk(U) ≤ C(n) vol(U)
k
n

for a universal constant C(n) depending only on dimension.

We call this the “euclidean width-volume inequality” since it holds for subspaces of euclidean space.

In general, we may ask about the width of various kinds of spaces. Note that the width-volume inequality

does not hold for all Riemannian manifolds. This was remarked by Guth in [32] and follows from work

by Burago and Ivanov [6]. The problem of characterizing exactly when such an inequality holds remains

wide open. The first positive result for a large class of Riemannian manifolds was the following non-

euclidean width-volume inequality:
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Theorem 1.3.2 (Balacheff-Sabourau [3]). If (Σk, g) is a closed Riemannian surface of genus k then:

W1(Σk) ≤ 1018
√

(k + 1) vol2(Σk)

The dependence on genus and area is asymptotically optimal. Originally, arithmetic hyperbolic

surfaces were used by Brooks to show the tightness of these dependencies [5]. One can also show

tightness of the bound by using expanders to construct surfaces which are difficult to subdivide. By using

the uniformization theory for orientable surfaces, we were able to improve the constant in Balacheff and

Sabourau’s result from 1018 to 220. The main result of Chapter 2 however, from our current perspective,

is the following generalization of the width-volume inequality:

Theorem 1.3.3 (Glynn-Adey & Liokumovich). If (Mn, g) is conformally non-negatively Ricci curved

then:

W(M) ≤ C(n) vol(M)
n−1
n

We will derive several useful consequences of this below. We will effectively construct minimal

hypersurfaces in manifolds of dimension 3 ≤ d ≤ 7. In particular, we get explicit upper bounds for

minimal hypersurfaces who exists was proven by Neves and Marques [39].

In this thesis we work with the metaphor that width is a non-linear analogue of eigenvalue estimates

for the Laplacian. This metaphor was first suggested by Gromov in [21]. One heuristic connection

between width estimates and spectra is explained by Cheeger’s inequality for Riemannian manifolds.

Theorem 1.3.4 (Cheeger [9]). For a compact Riemannian manifold (M, g) define:

h(M) = inf
Σ

area(Σ)

min{vol(A), vol(B)}

where the infimum is taken over all hypersurfaces Σ in M which subdivide M in to two disjoint subman-

ifolds A and B. Let λ1 be the smallest positive eigenvalue of the Laplacian of M . One has λ1 ≥ h2/4.

The width of a manifold controls the size of the largest cycle in an optimal sweep out of M by

small (n − 1)-cycles. To compute Wn−1(M) one considers continuous families of cycles. To estimate

the smallest positive eigenvalue the Laplacian of M one may evaluate the Cheeger constant of M . The

Cheeger constant is an infimum taken over surfaces splitting M in to two parts. Width, on the other

hand, is properly considered a parametric version of this slicing. One looks for families of (n− 1)-cycles

in M with the hope of capturing more of the global geometry of M . Thus, width is a parametric or

non-linear version of the Cheeger constant h(M). The parametric aspect of estimating width makes for

a more robust measure of geometric complexity than the spectrum.

1.3.2 Subdividing disks

Before discussing the result in Chapter 3, we will introduce some of the history of the problem. Motivated

by problems from geometric group theory, Gromov asked the following question in [26]:

Question 1.3.1. We say a Riemannian 2-disk is small if length(∂D2) ≤ 1 and d(p, ∂D2) ≤ 1 for all

p ∈ D2. Is there a universal constant C such that the following holds? Every small 2-disk admits a

homotopy of curves contracting its boundary circle to a point through curves of length at most C.
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At the time, Gromov was concerned with the diameter and area of van Kampen diagrams for groups.

It was asked with the hope that a positive answer could reduce the growth rate of a bound on Dehn’s

function, a combinatorially defined isoperimetric profile for finitely presented groups.

S. Frankel and M. Katz [16] answered Gromov’s question negatively by using a combinatorial con-

struction. The key feature of their construction is the observation that the complete binary tree Tn

has large “combinatorial width”: any continuous map Tn → R from the complete binary tree of height

n to the reals must have a fiber containing O(n) points. The metric on the disk theyconstructed was

negatively curved andconcentrated around a large binary tree in such a way that any curve meeting the

tree many times must be long. Their observation was that any contraction of the boundary to a point

would meet many edges of the tree. The use of combinatorics of trees to provide lower bounds on width

estimates for spheres was further developed by Liokumovich [37]. Continuing in this vein, the work of

Liokumovich, Nabutovsky, and Rotman [38] answered questions raised by Frankel and Katz and related

to Gromov’s question on disks. Motivated by their work, Papasoglu asked in [47]:

Question 1.3.2. Let M be a Riemannian manifold homeomorphic to a 3-disk satisfying: (i) diam(M) =

d, (ii) area(∂M) = A, (iii) and vol3(M) = V . Is it true that there is a homotopy St : ∂M × [0, 1]→M

such that: S0 = id∂M and S1 is a point and vol2(St) ≤ f1(A, d, V ) for some function f1?

Question 1.3.3. Let M be as above. Is it true that there is a relative 2-disk D splitting M in to two

regions of volume at least V/4 such that area(D) ≤ f2(A, d, V ) for some function f2?

In work with Zhifei Zhu [18], we answered Papasoglu’s questions negatively. Our construction involved

linking a pair of tori in the disk. The kinds of obstructions that links can create in high dimensional

metrics remains to be explored further. Independently, an elegant expander-based counterexample was

given by Papasoglu and Swenson in [46]. In the same work with Zhu, we also provided a positive result

related to Papasoglu’s Question 1.3.3 about subdividing disks. This work is contained in Chapter 3.

Before we can summarize our work, we will need to introduce some definitions.

We wish to partition a three sphere into two parts both of which contain at least a 1/4− ε fraction

of the total volume. Any embedded surface which does so will be called a subdividing surface.

Definition 1.3.2. Given a Riemannian 3-sphere M with volume V , let

SAε(M) = inf
Σ⊂M

{
vol2(H) : M \ Σ = R1 tR2, vol3(Ri) >

(
1

4
− ε
)
V for i = 1, 2

}
be the subdivision area of M . The infimum is taken over all embedded subdividing surfaces. We define

HF1(`) = sup
||z||1≤`

(
inf
∂c=z

vol2(c)

)

to be the first homological filling function. In the definition of HF1(`) the supremum is taken over all

1-cycles z satisfying vol1(z) ≤ ` and the infimum computes the size of the smallest 2-cycle c filling z = ∂c.

The homological filling functions are a natural generalization of the isoperimetric profile to high co-

dimension contexts. Whereas the isoperimetric profile quantifies the difficulty of filling a given amount

of surface area by a volume, the k-th homological filling function quantifies the amount (k + 1)-volume

needed to fill a k-dimensional cycle. The homological filling functions were used by Nabutovsky and

Rotman [45] to give the first curvature-free upper bound for the smallest area of a minimal hypersurface
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in a k-connected manifold. The proof of the their result for minimal surfaces motivated the work in

Chapter 3. And now we come back to disk subdivision. In Chapter 3 we show the following:

Theorem 1.3.5 (Glynn-Adey & Zhu). For any Riemannian 3-sphere (M, g) with M diffeomorphic to

S3 we have:

SAε(M) ≤ 3 HF1(2d)

where d is the diameter of (M, g).

This result says that any 3-sphere can be coarsely bisected by an embedded surface of controlled size.

It is interesting to note that the diameter term also has a homological interpretation. We can interpret

the diameter as the supremal length of a filling of pairs of points. In this sense, d = HF0(2).

1.3.3 Sponges and Width

In Chapter 4 we will study Guth’s sponge problem. This problem originated in Guth’s thesis [32]. The

precise statement of the problem is as follows:

Question 1.3.4 (Guth’s Sponge Problem). Are there dimensional constants ε = ε(d) > 0 such that:

If U is an open bounded set in the Rd of Lebesgue measure at most ε then there exists an embedding

U → Bd(1) which increases the length of all curves.

The intuition for the sponge problem is that a set of small measure which is large and diffuse should

resemble a physical sponge. A physical sponge has little volume itself, but encloses lot of volume in

pockets which can be squeezed out. The problem asks if it is possible to “squeeze all the water out of a

sponge” by an expanding embedding. The problem however remains open, even in the plane.

An embedding which increases the length of all curves is a difficult thing to construct. The algorithmic

difficulty of constructing expanding embeddings between planar regions in general is illustrated by the

following result:

Theorem 1.3.6 (Glynn-Adey). Given U and V open bounded sets in the plane, it is NP-complete to

determine if there is an expanding embedding from U to V .

At present, the sponge problem in full generality seems out of reach. However, I was able to provide

a positive solution to a related planar sponge problem. The result is sufficient to prove a width-volume

inequality for Jordan measurable sets in the plane.

Theorem 1.3.7 (Glynn-Adey). If U is an open bounded Jordan measurable set in the R2 of Lebesgue

measure at most one then there exists an embedding U → [0, 10] × R which increases the length of all

curves.

The sponge problem is important since it would offer a new conceptually different proof of the

euclidean width-volume inequality. One can use an expanding embedding to place any open set in to

the ball, sweep out the ball, and pull back the sweep-out to the original set. Since a size of sweep-out is

monotonic with respect to expanding embeddings, the sweep-out you obtain is no bigger than the sweep-

out of the ball. A scaling argument then yields the euclidean width-volume inequality. In addition to

offering a new proof of the euclidean width-volume inequality one could use a positive answer to the

sponge problem in geometric divide and conquer algorithms.



Chapter 1. Introduction 7

1.4 Open Questions

In this brief section we list and describe some interesting avenues for future work that arose during the

completion of this thesis. We describe the questions and the current state of affairs concerning them.

Question 1.4.1. Is there a universal constant C such that:

W(M) ≤ C ·HF1(C · diam(M))

for any Riemannian 3-manifold such that H1(M) = 0?

The result in Chpt. 3 suggest that there should be a bound of this form, at least for M = S3,

but we do not have a proof. One can subdivide an arbitrary S3 by a surface satisfying the proposed

bound, but it is not clear how to extend a single cut continuously to obtain a sweep-out. A positive

constructive answer to this question would provide an effective realization of the results in Nabutovsky

and Rotman [45]. That is, we could use the result to produce minimal hypersurfaces in k-connected

manifolds.

Question 1.4.2. What controls HF1 and, in particular, is there non-trivial bound by Ricci curvature

and volume?

The homological filling function ought to be amenable to techniques from the calculus of variations.

Presently the question of controlling the homological filling function by Ricci curvature is being investi-

gated by Zhifei Zhu. It is desirable to have these bounds in order to obtain estimates for sizes of minimal

surfaces.

Question 1.4.3. Does the sponge problem admit a positive solution for simply connected planar do-

mains?

It seems that restricting the topology of the open sets might make the problem easier. All simply con-

nected planar sets should have enough structure to admit a simple constructive technique for producing

an expanding embedding in to the ball.
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Chapter 2

Width and Ricci Curvature

Introduction In this chapter, we establish the main results of the thesis. We show that a width-volume

inequality holds for every conformally non-negatively Ricci curved manifold. We use this width-volume

inequality to obtain several results about minimal hypersurfaces and stationary integral varifolds in such

manifolds

2.1 Statement of Results

In [48] Pitts proved existence of a smooth closed embedded minimal hypersurface in any closed Rieman-

nian manifold M of dimension n, for 3 ≤ n ≤ 5. This result was extended to manifolds of dimension

n ≤ 7 by Schoen and Simon [51]. The main result of this chapter is a bound on the volume of this

hypersurface for certain conformal classes of Riemannian metrics.

Theorem 2.1.1. Suppose M0 is a closed Riemannian manifold of dimension n, for 3 ≤ n ≤ 7. If

M is in the conformal class of M0 then M contains a smooth closed embedded minimal hypersurface

Σ with volume bounded above by C(M0) Vol(M)
n−1
n . When Ricci(M0) ≥ 0 the constant C(M0) is an

absolute constant that depends only on n. In general, for M0 with Ricci(M0) ≥ −(n− 1)a2 we can take

C(M0) = C(n) max{1, aVol(M0)
1
n }.

If n > 7 the same upper bound will hold for the (n− 1)-volume of a closed minimal hypersurface with

singularities of dimension at most n− 8.

Theorem 2.1.1 follows from a bound on the width of M . One can find background and many results

about widths of manifolds in [25, App.1F], [30], [3], [39]. Informally, the width W(M) of a manifold

M is the smallest number such that every sweep-out of M by hypersurfaces contains a hypersurface of

volume at least W(M). We give a precise definition of width in Section 2.4.

To state our bound on the width of manifolds it will be convenient to define a conformal invariant

called the min-conformal volume. This invariant was recently introduced in a work of Hassannezhad

[33].

Definition 2.1.1. Let M be a compact Riemannian manifold. Define the min-conformal volume of M

to be: MCV(M) = inf{Vol(M ′)}, where the infimum is taken over all manifolds M ′ in the conformal

class of M with Ricci(M ′) ≥ −(n− 1).

9
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Theorem 2.1.2. Let M be a closed Riemannian manifold of dimension n then

W(M) ≤ C(n) max{1,MCV(M)
1
n }Vol(M)

n−1
n

Corollary. Let M be a closed Riemannian manifold of dimension n, a ≥ 0 and suppose that Ricci(M) ≥
−(n− 1)a2. Then

W(M) ≤ C(n) max{1, aVol(M)
1
n }Vol(M)

n−1
n

More generally, Theorem 2.1.2 holds if we replace the min-conformal volume in the estimate by the

infimum of {dVol(M ′)}, where d is any positive integer, such that M admits a degree d conformal

branched covering onto a manifold M ′ with Ricci(M ′) ≥ −(n− 1).

The conformal invariant MCV is somewhat reminiscent of (but different from) the conformal volume

studied by Li and Yau in [35]. Consider the following:

Example 2.1.1. MCV(M) can be computed explicitly when M is a Riemannian surface of genus g.

By the uniformization theorem M is conformally equivalent to a surface M0 of constant curvature 1 (if

g = 0), 0 (if g = 1) or −1 (if g ≥ 2). When the genus is 0 or 1 it follows that MCV(M) = 0. When

g ≥ 2 and the Gaussian curvature of a surface M ′ satisfies K ≥ −1 then by Gauss-Bonnet theorem

Area(M ′) ≥ 4π(g − 1) with equality holding exactly when K = −1 everywhere. We conclude that

MCV(M) = 4π(g − 1)

Theorem 2.1.2 then implies that for any surface M of genus g we have W(M) ≤ C
√

(g + 1) Area(M).

This result was previously obtained by Balacheff and Sabourau in [3] with constant C = 108. Using a

slightly modified version of our proof and invoking the Riemann-Roch theorem we can get a somewhat

better constant for orientable surfaces.

Theorem 2.1.3. Any closed orientable Riemannian manifold Sg of dimension 2 and genus g satisfies

W(Sg) ≤ 220
√

(g + 1) Area(Sg)

In [5] Brooks constructed hyperbolic surfaces of large genus and Cheeger constant bounded away

from zero. These surfaces have width W(M) bounded below by c
√
gArea(M) for some constant c > 0.

Hence, the inequality in Theorem 2.1.2 is optimal up to the value of the constant C(n). Upper bounds

on the higher parametric versions of width Wk(M) for all Riemannian surfaces were recently obtained

by Liokumovich [37].

It follows from the works of Almgren [2], Pitts [48], and Schoen and Simon [51] that estimates on

width yield upper bounds on the volume of smooth embedded minimal hypersurfaces in manifolds of

dimension less than or equal to 7. In higher dimensions, we obtain bounds on the volume of stationary

integral varifolds, which are smooth hypersurfaces everywhere except possibly for a set of Hausdorff

dimension at most n− 8.

It is possible to obtain more minimal hypersurfaces if one considers parametric families of sweep-

outs. In Section 2.4 we define families of hypersurfaces that correspond to cohomology classes of mod 2

(n− 1)-cycles on M . To each such p-dimensional family we assign the corresponding min-max quantity

Wp(M). Let Sn be the round unit n-sphere. In [21, 4.2.B] Gromov showed that there are constants

0 < c(n) < C(n) so that Wp(Sn) satisfies:

c(n)p
1
n Vol(Sn)

n−1
n ≤Wp(Sn) ≤ C(n)p

1
n Vol(Sn)

n−1
n
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Guth [31] derived similar bounds for min-max quantities corresponding to the Steenrod algebra

generated by the fundamental class λ. Marques and Neves [39], building on the work of Gromov and

Guth, proved existence of infinitely many minimal hypersurfaces on a manifold M of dimension n, for

3 ≤ n ≤ 7, under the assumption that M has positive Ricci curvature.

In Section 2.9 we show that ifM has non-negative Ricci curvature then Wp(M) ≤ C(n)p
1
n Vol(M)

n−1
n .

We use this bound to derive an effective version of the theorem of Marques and Neves. Let sysn−1(M)

be the infimum of volumes of smooth closed embedded minimal hypersurfaces in M .

Theorem 2.1.4. Suppose M is a closed Riemannian manifold of dimension n, 3 ≤ n ≤ 7, and positive

Ricci curvature. For every k there exists k smooth closed embedded minimal hypersurfaces of volume

bounded above by C(n)k
1

n−1 Vol(M)
(
sysn−1(M)

)− 1
n−1 , where C(n) depends only on n.

2.2 Previous Work on Ricci and Width

The main estimates of this chapter were motivated by similar estimates on the spectrum of the Laplace

operator on Riemannian manifolds.

Let M be a closed Riemannian manifold in the conformal class of M0. In [34] Korevaar constructed

a decomposition of M into annuli (and other regions) which measures the ‘volume concentration’ of

the metric M with respect to the base metric of M0. This annular decomposition is then used to

estimate Rayleigh quotients, thus bounding the spectrum of the Laplacian of M . Korevaar’s method

was further developed by Grigor’yan-Yau in [20] and Grigor’yan-Netrusov-Yau in [19] to obtain upper

bounds on the eigenvalues of elliptic operators on various metric spaces. In [22] Gromov used a different

approach (based on Kato’s inequality) to obtain upper bounds for the spectrum of the Laplacian on

Kähler manifolds [22].

In [33] Hassannezhad, combining methods of [10] and [19], obtained upper bounds for eigenvalues

of the Laplacian in terms of the conformal invariant MCV (see Definition 2.1.1) and the volume of the

manifold.

We do not use a discretization technique, but instead work at all times with our original manifold.

This suggests that our techniques are more general. Our techniques however give an explicit geometric

construction of the sweep-out withhout using any spectral estimates.

As explained in F. Coda Marques and A. Neves [39], estimates on width give, via min-max construc-

tions, explicit upper bounds on the area of minimal hypersurfaces in manifolds of small dimension. In

high dimensions, we obtain bounds on the area of stationary integral varifolds. Estimating the width of

a manifold, or the area of minimal surfaces in it, is a highly non-linear problem. This paper implicity

linearizes the problem, by reducing the problem of constructing a sweep-out to that of estimating the

spectrum of the Laplacian, which is a linear problem. For further insights into this linearization approach

to width estimates see [49, Sec §8] and [27, Sec §5.2].

As suggested by Gromov in [21] the problem of bounding width W(M) and its parametric version

Wk can be thought of as a nonlinear analogue of finding the spectrum of the Laplacian on M . In this

paper we were guided by this analogy.

Recall for a moment, Guth’s Width-Volume Inequality. In dimension n ≥ 3 one can find a family of

parallel hyperplanes in Rn yielding the desired sweep-out. This follows from the work of Falconer [11]

on the (n, k)-Besicovitch conjecture. In dimension two, however, it may happen that any slicing of U by

parallel lines contains an arbitrarily large segment. To surpass problems of this kind Guth developed a
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method of sweeping out regions by ‘bending planes’ around the skeleton of the unit lattice in Rn. This

method was developed further in [31] to bound higher parametric versions of width. We do a similar

bending construction in Chapter 4.

It follows from the work of Burago and Ivanov [6] that on any manifold of dimension greater than

two there exists a Riemannian metric of small volume and arbitrarily large (n − 1)-width. Our results

show that this does not happen for certain conformal classes of manifolds. In particular, this does not

happen in the presence of curvature bound.

In [44] Nabutovsky and Rotman showed that any closed Riemannian manifold possesses a stationary

1-cycle of mass bounded by C(n) Vol(M)
1
n . One wonders if this result can be generalized to the case of

minimal surfaces on Riemannian manifolds.

Some results in this direction were obtained by A. Nabutovsky and R. Rotman in [45] where they

bounded volumes of minimal surfaces on Riemannian manifolds in terms of homological filling functions

of M . The k-th homological filling function HFk : R+ → R+ is defined as the smallest number HFk(x),

such that every k-cycle of mass at most x can be filled by a (k + 1)-chain of mass at most HFk(x) + ε.

Theorem 2.2.1 (Nabutovsky-Rotman [44]). Let M be a closed Riemannian manifold of dimension n,

for 3 ≤ n ≤ 7, such that the first n−1 homology groups are trivial, H1(M) = ... = Hn−1(M) = 0. There

exists a smooth, closed, embedded minimal hypersurface of volume bounded by

C(n) HFn−1(C(n) HFn−2(· · ·HF2(C(n) Vol(M)
1
n ) · · · ))

.

Their proof uses a combination of Almgren-Pitts min-max method and other techniques. In partic-

ular, a bound on the width of M in terms of homological filling functions does not follow from their

argument. It would be interesting to know whether such a bound exists. It is also interesting to know

whether homological filling functions can be controlled in terms of Ricci curvature of M .

Other important results are contained in a paper of Marques and Neves [40] where, among other

things, they prove a sharp upper bound on W (M) when M is a Riemannian 3-sphere with Ricci > 0

and scalar curvature R ≥ 6.

Remark. In [50] Stephane Sabourau independently obtained upper bounds on the width and volume of

the smallest minimal hypersurface on Riemannian manifolds with Ricci ≥ 0.

2.3 Plan of the Chapter

The structure of the proof of Theorem 2.1.2 is as follows: To construct a sweep-out of M , we subdivide

M repeatedly, using an isoperimetric inequality adapted to our context. Once we have subdivided M

into a collection of small volume open subsets, we construct a sweep-out of each small volume piece

using the fact that at small scales M is locally Euclidean. We then assemble these local sweep-outs into

a global sweep-out of M .

In Section 2.4 we define what it means for a family of (n− 1)-cycles to sweep-out M . We define the

width W(M) and its higher parametric version Wk(M). We also prove Proposition 1, which gives us

control of the width of M in terms of widths of its open subsets.

In Section 2.5 we use an idea of Colbois and Maerten from [10] together with the length-area method

to prove an isoperimetric inequality (Theorem 2.5.1) which allows us to partition any open set in M in
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two parts with both parts satisfying a lower volume bound. The subdividing surface satisfies an upper

bound on area which depends on the volume of the open set. The lower bound on volume of the two

parts ensures that after repeatedly subdividing, using Theorem 2.5.1, we will have many subsets of small

volume.

In Section 2.6 we estimate the width of small volume submanifold M ′ ⊂M in terms of (n−1)-volume

of its boundary. The proof proceeds by covering M ′ with small balls, which are (1 + ε0)-bilipschitz

diffeomorphic to balls in Euclidean space. We construct a sequence of nested open subsets Ui of M ′ with

volumes tending to 0, such that the difference Ui \ Ui+1 is contained in a small ball. Since the ball is

almost Euclidean, we can sweep out Ui \ Ui+1 by cycles of controlled volume. We then use Proposition

1 to assemble a sweep-out of M ′.

In Section 2.7 we prove Theorem 2.1.2 by inductively constructing sweep-outs of larger and larger

subsets of M . The result of Section 2.6 serves as the base of the induction. To do so, we carry out the

necessary estimates to apply Theorem 2.5.1 and Proposition 2 to subdivide our manifold as needed.

In Section 2.8 we prove Theorem 2.1.3. We also describe how to obtain a version of Theorem 2.1.2

for manifolds, which admit a conformal mapping into some nice space M0.

In Section 2.9 we show that a manifold with non-negative Ricci curvature can be covered by balls of

small n-volume, small (n−1)-volume of the boundary, and such that the cover has controlled multiplicity.

We use this decomposition to bound the volume of k-parametric sweep-outs of M and, consequently,

volumes of stationary integral varifolds or minimal hypersurfaces in M .

2.4 Width of Riemannian manifolds

Let G be an abelian group. We denote the space of flat G-chains in M by Fk(M ;G) and the space of

flat G-cycles by Zk(M ;G). The space of integral flat chains was defined in [13]. For flat chains with

coefficients in an abelian group G see [12, (4.2.26)]. The deformation theorem of Federer and Fleming

states that a flat chain of finite mass and boundary mass can be approximated by a piecewise linear

polyhedral chain (see [12, (4.2.20),(4.2.20)ν ]). The deformation theorem will be used throughout this

paper. Often we will abuse notation and use the same letter for a flat G-chain and a polyhedral chain

approximating it. We will denote the mass of a k-chain c by Volk(c).

In [1] F. Almgren constructed an isomorphism

FA : πk(Zn−1(M ;G); 0)→ Hn+k(M ;G)

For k = 1 the map F can be described as follows. Let ct ∈ Zn−1(M ;G), t ∈ S1, be a continuous family

of cycles. Pick a fine subdivision t0, ..., tm of S1 and let Ci be a (nearly) volume minimizing n-chain

filling ci − ci−1 (for i ∈ Zm). Then C =
∑
i∈Zm Ci is an n-cycle. It turns out that homology class of

C is independent of the choice of the subdivision and filling chains Ci as long as the subdivision is fine

enough and the mass of chains Ci is close to the mass of a minimal filling.

If M is a manifold with boundary we may also consider the space of flat cycles relative to the boundary

of M . Let q be a quotient map q : Fk(M ;G)→ Fk(M,∂M ;G) = Fk(M ;G)/Fk(∂M ;G). The boundary

map on Fk(M ;G) descends to a boundary map ∂ on the quotient. This allows us to define the space of

relative cycles Zk(M,∂M ;G). Cycles in this space can be represented by (n− 1)-chains with boundary

in ∂M . Almgren’s map then defines an isomorphism π1(Zn−1(M,∂M ;G), {0}) ∼= Hn−1(M,∂M ;G).
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For simplicity from now on we assume everywhere that group G = Z2. Henceforth we drop the

reference to the group G from our notation. Z2 coefficients will suffice for all applications to volumes

of minimal surfaces that we obtain in this paper. When manifold M is orientable the bound in The-

orem 2.1.2 holds for sweep-outs with integer coefficients. The proof is essentially the same with some

minor modifications to account for orientation of cycles.

Definition 2.4.1. We define the following two notions:

1. For a closed manifold M a map f : S1 → Zn−1(M) is called a sweep-out of M if it is not

contractible, i.e. FA([f ]) 6= 0. Similarly, if M has a boundary we call f : S1 → Zn−1(M,∂M) a

sweep-out if the image of [f ] under Almgren’s isomorphism is non-zero.

2. The width of M is

W(M) = inf
{f}

sup
t

Voln−1(f(t))

where the infimum is taken over the set of all sweep-outs of M .

For manifolds with boundary it will be convenient to consider a particular type of sweep-outs that

start on a trivial cycle and end on ∂M . We will call them ∂-sweep-outs.

Definition 2.4.2. 1. Let M be a manifold with boundary. A ∂-sweep-out of M is a map f : [0, 1]→
Zk(M), such that:

(a) f(0) is a trivial k-cycle and f(1) = ∂M

(b) Let q ◦ f : [0, 1]→ Zn−1(M,∂M) be the composition of f with the quotient map q. When we

identify q ◦ f(0) and q ◦ f(1) we obtain a sweep-out of M .

2. The ∂-width of M is:

W∂(M) = inf
{f}

sup
t

Voln−1(f(t))

where the infimum is taken over the set of all ∂-sweep-outs of M .

From the definition we have inequalities W(M) ≤W∂(M) and W∂(M) ≥ Voln−1(∂M).

Definition 2.4.2 is motivated by the following proposition.

Proposition 1. Let U0 ⊂ ... ⊂ Um−1 = M be a sequence of nested open subsets of M , and let Ai

denote the closure of Ui \ Ui−1 for 1 ≤ i ≤ m − 1 and A0 denote the closure of U0. Then W∂(M) ≤
sup{W ∂(A0),W ∂(A1) + Voln−1(∂U0), ...,W ∂(Am−1) + Voln−1(∂Um−2)}.

Proof. By the definition of ∂-width for each i there exists a map ci : [0, 1]→ Zn−1(M) that starts on a

trivial cycle, ends on ∂Ai and is bounded in volume by W∂(Ai)+ε. By definition of Ai, ∂Ai ⊂ ∂Ui∪∂Ui−1

and ∂Ui + ci+1(1) = ∂Ui+1.

We define a sweep-out c : [0, 1]→ Zn−1(M) as follows. For 0 ≤ t ≤ 1
m we set c(t) = c0(t/m) and for

i
m ≤ t ≤

i+1
m , i = 1, ...,m− 1 we set c(t) = ci(m(t− i

m )) + ∂Ui−1.

Let FA be the Almgren’s isomorphism. We can represent the homology class FA(c) by a sum of

n-chains
∑m−1
i=0 Ci, such that ∂Ci = c( im ) − c( i−1

m ). Moreover, since each ci is a ∂-sweep-out of Ai we

may assume that Ci represents a non-trivial homology class in Hn(M,M \Ai) ∼= Hn(Ai, ∂Ai).

We claim that the sum
∑k
i=0 Ci represents a non-trivial homology class in Hn(M,M \ Uk). Indeed,

assume this to hold for
∑k−1
i=0 Ci. Let V1 denote a small tubular neighbourhood of the set Uk−1 inside
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Uk. Let V2 be a small tubular neighbourhood of Uk \ Uk−1 inside Uk. Let V3 = V1 ∩ V2 ⊂ Uk. The pair

(V3, V3 ∩ ∂Uk) is homotopy equivalent to (∂Uk−1, ∂Uk−1 ∩ ∂Uk). From the Mayer-Vietoris sequence we

have an isomorphism Hn(Uk, ∂Uk)→∂ Hn−1(∂Uk−1, ∂Uk−1 ∩ ∂Uk). This map sends [
∑k−1
i=0 Ci + Ck] to

the fundamental class [∂Uk−1 \ ∂Uk].

We conclude that c(t) is a ∂-sweep-out of M .

In the last section of this paper we will obtain upper bounds on the k-parametric sweep-outs

Wk(M) of M . By Almgren’s isomorphism theorem we have πm(Zn−1(M ;Z); 0) = 0 for m > 1 and

π1(Zn−1(M ;Z2); 0) ∼= Z2. Hence, the connected component Z0
n−1 of Zn−1(M ;Z2) that contains the

0-cycle is weakly homotopy equivalent to the Eilenberg-MacLane space K(Z2, 1) ' RP∞.

Let K be a k-dimensional polyhderal complex and σ : K → Z0
n−1(M) be continuous and assume

that σ(x) has finite mass for all x. Following [39] we define k-parametric width Wk as follows.

Definition 2.4.3. We introduce the following parametric version of Definition 2.4.1:

1. For a closed manifold M we say that σ is a k-parametric sweep-out of M if σ(K) represents the

non-zero class in Hk(Z0
n−1,Z2) ∼= Z2.

2. Define the k-parametric width to be Wk(M) = infσ supt∈K Voln−1(f(t)), where the infimum is

taken over the set of all k-parametric sweep-outs σ.

It follows from the definition that W1(M) = W(M) and Wk(M) ≤Wk+1(M).

Using Almgren-Pitts min-max theory it is possible to obtain minimal hypersurfaces from sweep-outs

of M . In [39] Marques and Neves proved the following results.

Theorem 2.4.1 (Marques-Neves). Let M be a closed Riemannian manifold of dimension n, 3 ≤ n ≤ 7.

1. There exists a smooth, closed, embedded minimal hypersurface in M of volume ≤W(M).

2. If Wk(M) = Wk+1(M) then there exists infinitely many smooth, closed, embedded minimal hyper-

surfaces in M of volume ≤Wk(M).

3. Suppose M is a manifold of positive Ricci curvature and there exists only finitely many mini-

mal hypersurfaces of volume ≤ Wk(M). Then there exists a smooth, closed, embedded minimal

hypersurface Σk and ak ∈ N, such that ak Voln−1(Σk) = Wk(M).

Remark. In the proof of these results Marques and Neves impose an additional technical condition on

Wk. Namely, they require that the infimum in the definition of Wk is taken over only those maps

f : K → Zn−1(M) that have no concentration of mass. This is defined as follows. Using the notation of

[12] let ‖c‖ denote the Radon measure associated with the flat chain c. Then a map f is said to have no

concentration of mass if

lim
r→0

sup{‖f(x)‖(B(a)) : x ∈ K, a ∈M} = 0

All estimates on Wk in our paper come from explicit constructions of families of flat cycles (in fact,

polyhedral cycles), which have no concentration of mass. Therefore we can safely combine our estimates

with the conclusions of Theorem 2.4.1.
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2.5 Isoperimetric inequality

Let (M, g0) be a closed Riemannian n-manifold with Ricci ≥ −(n− 1). Let g = φ2g0 be a Riemannian

metric on (M, g0) in the conformal class of g0. Here φ : M0 → R+ is a smooth function on (M, g0).

Notation 2.5.1. We write M0 for (M, g0) and M for (M, g).

Below we use the convention that geometric structures measured with respect to g0 have a superscript

zero in their notation. Geometric structures measured with respect to g have no superscript.

Notation 2.5.2. Let Volk(U), d(x, y), dV , B(x, r) and ∇ denote the k-volume function, distance

function, volume element, closed metric ball of radius r about x, and gradient with respect to g. Let

Vol0k(U), d0(x, y), dV 0, B0(x, r), ∇0 denote the corresponding quantities with respect to g0.

Let W be a subset of U and let N0
l (W ) denote the set {x ∈ U |d0(W,x) ≤ l}.

Lemma 2.5.1. There exists a set W ⊂ U and l ∈ (0, 1
2 ], such that

1. Voln(U)/25n ≤ Voln(W ) ≤ 2 Voln(U)/25n

2. Voln(N0
l (W )) ≤ (1− 1

25n ) Voln(U)

3. Vol0n(N0
l (W ) \W ) ≤ ln max{2 Vol0n(U), c(n)}

Proof. The argument is essentially the same as the proof of Lemma 2.2 in the work of Colbois and

Maerten [10]. Let r be the smallest radius with the property that Vol(B0(a, r) ∩ U) = Vol(U)
25n for some

a ∈M .

We consider two cases. If r ≤ 1 we define W = B0(a, r) ∩ U and l = r
2 .

We observe, using curvature comparison for the space M0, that the l-neighbourhood of B0(a, r) can be

covered by at most 24.4n balls of radius r. Indeed, let {B0(xi, r/2)}Ni=1 be a maximal collection of disjoint

balls with centers in B0(a, 3r
2 ). Since the collection is maximal, the union

⋃
B(xi, r) covers B0(a, 3r

2 ).

Using the Bishop-Gromov comparison theorem we can estimate the number N . Let Vol0n(B(xj ,
r
2 )) =

mini{Vol0n(B(xi,
r
2 ))}.

N ≤
Vol0n(B0(a, 3r

2 ))

Vol0n(B(xj ,
r
2 ))
≤

Vol0n(B(xj ,
5r
2 ))

Vol0n(B(xj ,
r
2 ))
≤
V ( 5r

2 )

V ( r2 )

where V (r) denotes the volume of a ball of radius r in n-dimensional hyperbolic space. When r ∈ (0, 1]

this quantity is maximized for r = 1. We conclude that B0(a, 3r
2 ) can be covered by

N ≤
∫ 5

2

0
sinhn−1(s)ds∫ 1

2

0
sinhn−1(s)ds

≤ (2e
5
2 )n ≤ 24.4n

balls, such that each of them has Voln(B0(xi, r) ∩ U) at most Voln(U)
25n . This proves inequalities (1) and

(2) for the case r ≤ 1.

Volume of a unit ball in hyperbolic n-space satisfies V (1) ≤ ωnen−1, where ωn denotes the volume of

a unit n-ball in Euclidean space. Hence, Vol0n(B0(a, 3r
2 ) \B0(a, r)) ≤ 25nen−1ωnr

n = c(n). This proves

(3) for the case r ≤ 1.

Suppose r > 1. Let k be the smallest number, such that there exists a collection of k balls of

radius 1 {B0(xi, 1)}ki=1 with Vol(
⋃
B0(xi, 1) ∩ U) ≥ Voln(U)

25n . Let {B0(xi, 1)}ki=1 be a collection of k
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balls with the property that if {B0(yi, 1)}ki=1 is any other collection of k balls then Vol(
⋃
B0(xi, 1) ∩

U) ≥ Vol(
⋃
B0(yi, 1) ∩ U). We set W =

⋃
B0(xi, 1) ∩ U . Note that by our definition of k we have

Voln(W ) < 2 Voln(U)
25n .

Consider 1/2-neighbourhood of W and note that it can be covered by at most (24.4)n sets Bj , where

each Bj is a union of k balls B0(yi, 1) of radius 1. By definition of W we have Vol(Bj) ≤ Vol(W ), so

Voln(N0
l (W )) ≤ 24.4n+1

25n Vol(U). Finally, we observe that
Vol0(N0

l (W ))
1/2 ≤ 2 Vol0(U).

Theorem 2.5.1. There exists a constant c(n) such that the following holds: Let U ⊆ M be an open

subset. There exists an (n − 1)-submanifold Σ ⊂ U subdividing U into two open sets U1 and U2 such

that Voln(Ui) ≥ ( 1
25n ) Voln(U) and Voln−1(Σ) ≤ c(n) max{1,Vol0n(U)

1
n }Voln(U)

n−1
n .

Proof. We use the length-area method (see [25, p. 4]) to find a small volume hypersurface in N0
l (W )\W ,

where W and l are as in Lemma 2.5.1.

Let f(x) = d0(W,x)|U : U → R+ be the d0 distance form x to W restricted to the set U . By

Rademacher’s theorem, f is differentiable almost everywhere. By applying the co-area formula we have:

∫ l

0

Voln−1(f−1(t))dt =

∫
f−1(0,l)

||∇f ||dV

(Hölder’s inequality) ≤

(∫
f−1(0,l)

||∇f ||ndV

) 1
n (

Voln(f−1(0, l)
)n−1

n

=
(
Vol0n(f−1(0, l))

) 1
n
(
Voln(f−1(0, l))

)n−1
n

The last equality holds since ||∇f ||ndV = ||∇0f ||ndV 0 is a conformal invariant. By Lemma 2.5.1 we

have Vol0n(f−1(0, l))
1
n ≤ c(n)lmax{Vol0n(U)

1
n , 1}. For the second factor we apply the bound Voln(f−1(0, l)) ≤

Voln(U). It follows that

min
r<t<2r

Voln−1(f−1(t)) ≤ c(n) max{Vol(U)
1
n , 1}Voln(U)

n−1
n

Thus for some regular value of t the level set f−1(t) with area no larger than average, is the desired

submanifold Σ. We take U1 = f−1([0, t)) and U2 = f−1((t,∞)).

Since W ⊆ U1 by Lemma 2.5.1 we have Vol(U1) ≥ Voln(U)
25n . On the other hand, U1 ⊆ N0

l (W ) of

volume at most 1− Voln(U)
25n so Vol(U2) ≥ Voln(U)

25n .

2.6 The width of small submanifolds

In this section we will show that if a submanifold M ′ of a Riemannian manifold M has small enough

volume then its ∂-width can be bounded from above in terms of Voln−1(∂M ′). First we show this for a

submanifold that is contained in a very small ball.

Definition 2.6.1. For a closed Riemannian manifold M and ε0 ∈ (0, 1) define ε(M, ε0) to be the largest

radius r such that: for every x ∈ M we have that B(x, r) is (1 + ε0)-bilipschitz diffeomorphic to the

Euclidean ball of radius r.

Lemma 2.6.1. If M ′ ⊂M is contained in a ball of radius ε(M, ε0) then W∂(M ′) ≤ (1+ε0) Voln−1(∂M ′).
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Proof. A 2-dimensional version of the lemma appeared in [36]. Let U ⊂ Rn be the image of M ′ under

(1 + ε0)-bilipschitz diffeomorphism F . An argument similar to that in [41, §6] shows that for a generic

line l ∈ Rn the projection of ∂U onto l is a Morse function. Let p denote such a projection map and

assume that p(U) = [0, c].

Define f : [0, c]→ Zn−1(U,Z) by setting

f(t) = ∂(p−1([0, t]) ∩ U)

Open subsets of hyperplanes in Rn are volume minimizing regions. Therefore we have Voln−1(f(t)) ≤
Vol(U) for all t. Composing f with F−1 we obtain the desired sweep-out.

We extend the result of the lemma to submanifolds of small volume.

Proposition 2. There exist a constant C1(n) > 0, such that for every closed Riemannian n-manifold M ,

ε0 > 0 and every embedded submanifold M ′ ⊂M of dimension n and volume Voln(M ′) ≤ ε(M, ε0)n/C1

the following bound holds:

W∂(M ′) ≤ 3(1 + ε0) Voln−1(∂M ′)

The proof of Proposition 2 somewhat resembles a high dimensional analog of the Birkhoff curve

shortening process. We cover M ′ by a finite collection of small balls Bi such that balls of 1/4 of the

radius still cover M ′. Since M ′ has very small volume it will not contain any of the balls Bi. Hence,

we can cut away the part of ∂M ′ that is contained in Bi and replace it with a minimal surface that

does not intersect (1/4)Bi. As a result we obtain a new submanifold M ′′ ⊂ M ′ that does not intersect

(1/4)Bi. Moreover, we can do this in such a way that volume of the boundary does not increase. The

difference M ′ \M ′′ is contained in a small ball, so we can sweep it out by Lemma 2.6.1. After finitely

many iterations we obtain a submanifold that is entirely contained in one of the small balls. We then

apply Proposition 1 to assemble a sweep-out of M ′ from sweep-outs in small balls.

In the proof of Proposition 2 we will need the following isoperimetric inequality:

Theorem 2.6.1 (Federer–Fleming). There exists a constant C2(n) > 1, such that every k-cycle A

in a closed unit ball in B ⊂ Rn can be filled by a (k + 1)-chain D in B, such that: (i) Vol(D) ≤
C2(n) Vol(A)

k+1
k , and (ii) D is contained in the C2(n) Vol(A)

1
k -neighbourhood of A.

To show Proposition 2 we first need to prove the following lemma.

Definition 2.6.2. A k-chain A will be called δ-minimizing if Vol(A)− δ ≤ inf{A′ ∈ Ck(M,Z) : ∂A′ =

∂M}.

Lemma 2.6.2. There is a constant C3(n) such that the following holds: Let B be a ball of radius

r0 ≤ ε(ε0,M) and A ⊂ ∂B be an (n − 1)-chain satisfying Vol(A) ≤ C3(n) Vol(∂B). For every δ > 0

there exists δ-minimal filling D of ∂A in B(x, r0), such that D ∩B(x, r0/2) = ∅. We may take C3(n) ≤
ω−1
n−1(10C2(n))−n

The proof of Lemma 2.6.2 is a variation of an argument in [25, §4.2-3]. See also [29, Lemma 6].

Proof. Fix δ′ < δr0/100C2(n). Let D1 be some δ′-minimal filling of ∂A in B. We claim that D1 is

contained in a r0/4-neighbourhood of ∂A except for a subset of volume at most δ′.
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Since B is 2-bilipschitz homeomorphic to a Euclidean ball, we may apply the Federer-Fleming isoperi-

metric inequality (with a worse constant) inside B. We obtain that every (n − 2)-cycle S can be filled

in B by an (n− 1)-chain of mass at most 2C2(n) Vol(S)
n−1
n−2 .

Let A(r) = Voln−2({x ∈ D1 : d(x, ∂A) = r}) and V (r) = Voln−1({x ∈ D1 : d(x, ∂A) > r}). The

co-area inequality implies that |V ′(r)| ≥ A(r).

It follows by the δ′-minimality of D1 that every open subset U ⊂ D1 not meeting ∂A must have

volume at most:

Voln−1(U) ≤ 2C2(n) Voln−2(∂U)
n−1
n−2 + δ′

In particular, we have: V (r) ≤ 2C2(n)A(r)
n−1
n−2 +δ′. Applying the co-area inequality again we obtain:

d

dr

(
[V (r)− δ′]

1
n−1

)
≤ −1

(n− 1)(2C2(n))
n−1
n−2

Hence, V (r) ≤ δ′ for some

r ≤ (n− 1)(2C2(n))
n−1
n−2 Vol(D1)

1
n−1

≤ (n− 1)(2C2(n))
n−1
n−2 Vol(A)

1
n−1

≤ 2(n− 1)(2C2(n))
n−1
n−2

(
C3(n)nωnr

n−1
0

) 1
n−1 ≤ r0/4

We will now cut off the piece of D1 that lies outside of (r0/4)-neighbourhood of ∂D1. Again, by the

co-area inequality we have that: A(r′) ≤ 8
r0
δ′ for some (1/4)r0 ≤ r′ ≤ (3/8)r0. The Federer-Fleming

isoperimetric inequality gives a filling of {d(x, ∂D1) = r′} by an (n− 1)-chain D2 satisfying:

Vol(D2) ≤ 2C2(n)

(
8

r0
δ′
)n−1
n−2

≤ δ/2

Moreover, the filling has the property that the distance from {d(x, ∂D1) = r′} to every point of D2 is

at most 2C2(n)
(

8
r0
δ′
) 1
n−1 ≤ r0/8. This gives the desired filling.

Now we prove Proposition 2. We will construct a decomposition of M into open sets and then apply

Proposition 1.

Proof. Set C1(n) = 4nωn−1(10C3(n))n. Let ε = ε(M, ε0) and assume that M ′ ⊂M has volume bounded

by 1/C1(n)εn. Let Bi = B(xi, ε) for i = 1, ..., N , be a collection of balls such that M ′ is contained in

the interior of
⋃
B(xi, ε/4). Fix δ > 0. We will construct a collection of open subsets U1 ⊂ ... ⊂ UN ,

with the following properties:

1. UN = M ′.

2. Vol(∂Ui) ≤ Vol(∂Ui+1) + δ/2i.

3. Ui ∩
⋃N
j=i+1B(xj , ε/4) is empty.

Assume that Ui+1, ..., UN have been defined. If Ui+1 ∩B(xi, ε/4) is empty we set Ui = Ui+1. Other-

wise, to construct Ui we proceed as follows.
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Figure 2.1: Proof of Proposition 2

By the co-area inequality we can find S(xi, r
′) = ∂B(xi, r

′), with 3
4ε < r′ < ε, such that S =

Ui+1 ∩ S(r′, xi) satisfies Voln−1(S) ≤ 4 Voln(Ui+1 ∩ B(xi, ε))
1−1/n. By Lemma 2.6.2 there exists an

(n−1)-chain A ⊂ B(xi, r
′) with ∂A = ∂S which is (δ/2i)-minimizing and A does not intersect B(xi, ε/4).

Let X denote the union of the connected components of Ui+1 \ A that intersect B(xi, ε/4). We define

Ui = Ui+1 \ X. Note that the volume decreased and by δ/2i-minimality of A and the volume of the

boundary could not have increased by more than δ/2i.

By Lemma 2.6.1 we have W∂(X) ≤ 2(1 + ε0) Voln−1(∂M ′) + δ. By Proposition 1 we have W∂(M) ≤
3(1+ε0) Voln−1(∂M ′)+2δ. Since δ can be chosen arbitrarily small this concludes the proof of Proposition

2.

2.7 Proof of the width inequality

In this section we prove Theorem 2.1.2.

Theorem 2.7.1. Let M0 be a manifold with Ricci ≥ −(n − 1) and let M be in the conformal class of

M0. Let M ′ ⊆ M be an n-dimensional submanifold. There exists a constant C(n) that depends on the

dimension, such that:

W∂(M ′) ≤ C(n) max{1,Vol0n(M ′)
1
n }Voln(M ′)

n−1
n + 3 Voln−1(∂M ′)

Theorem 2.1.2 follows as a special case.

Proof. Pick the constant C(n) = 4 · 25nc(n), where c(n) is the constant in Theorem 2.5.1.

Let ε > 0 be small enough that every submanifold of volume at most 25nε satisfies conclusions of

Theorem 2. Suppose that M ′ ⊆ M , and pick k so that: kε < Vol(M ′) ≤ (k + 1)ε and k > 25n. We

proceed by induction on k.

Assume the desired sweep-out exists for every open subset of volume at most kε. By Lemma

2.5.1 we can find an (n − 1)-submanifold Σ subdividing M ′ into M1 and M2 of volume at most

c(n) max{1,Vol0n(M ′)
1
n }Voln(M ′)

n−1
n , such that Voln(Mi) ≤ (1 − 1/25n) Voln(M ′). Since k > 25n

the inductive hypothesis is applicable to both halves Mi.

By inductive hypothesis we have

W ∂(Mi) ≤ 3(Vol(∂M ′ ∩Mi) + Vol(Σ)) + C(n) max{1,Voln(M)
1
n }Voln(Ui)

n−1
n
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We apply Proposition 1 with U0 = M ′ \M2 and U1 = M ′. We obtain

W∂(M ′) ≤ 3 Vol(∂M ′) + 4 Vol(Σ) + C(n) max{1,Vol0n(M ′)
1
n }max

i=1,2
{Voln(Mi)

n−1
n }

We use bounds Voln(Mi)
n−1
n ≤ 25n−1

25n Voln(M ′) and

Voln−1(Σ) ≤ c(n) max{1,Vol0n(M ′)
1
n }V oln(M ′)

n−1
n

We compute that the resulting expression satisfies the desired bound.

Theorem 2.1.2 follows from Theorem 2.7.1 by taking the infimum of the total volume of M0 over all

manifolds M0 that are conformally equivalent to M and have Ricci ≥ −(n− 1).

2.8 The width of surfaces

In this section we prove a theorem of Balacheff and Sabourau [3] with an improved constant. Note that

the result also follows as an immediate corollary of Theorem 2.1.2 with a worse constant. However, we

observed that one can use a slightly modified version of our proof and invoke the Riemann-Roch theorem

to get a somewhat better constant.

Below we prove a version of Theorem 2.1.2 which allows us to bound width of a manifold M if M

admits a conformal map into some nice space M0 with a small number of pre-images. We will then

estimate the width of surfaces by applying uniformization theorem and the Riemann-Roch theorem.

Our argument is parallel to the analogous arguments of Yang and Yau [54] and [34, §4] for eigenvalues

of the Laplacian on Riemann surfaces.

Definition 2.8.1. Define τ = τ(M0) and ν = ν(M0) as follows: τ is the least number such that any

annulus B0(x, 2r) \ B0(x, r) in M0 can be covered by τ balls of radius r. We let ν(M0) be the least

constant such that Vol0n(B0(x, r)) ≤ νrn for all r > 0 and all x ∈M0.

Theorem 2.8.1. Let Φ : (M, g) → (M0, g0) be a conformal map. Suppose the following holds: (i) Any

point x ∈ M0 has at most K pre-images, (ii) The set {x ∈ M,dΦ(x) = 0} is of measure 0. It follows

that:

W(M) ≤ 8ν
1
nK

1
n

1− ( τ+1
τ+2 )

n−1
n

Vol(M)
n−1
n

Proof. First, we prove an analog of our isoperimetric inequality, Theorem 2.5.1.

Let U be an open set in M . We show that there is an (n − 1)-submanifold Σ ⊂ U such that

U \ Σ = U1 t U2 with Voln(Ui) ≥ 1
τ+2 Voln(U) and Voln−1(Σ) ≤ 2ν

1
nK

1
n Voln(U)

n−1
n .

Let p ∈M and u and v be vectors in the tangent space TpM . Since Φ is conformal we have

〈Φ∗u,Φ∗v〉g0 = φ(x)〈u, v〉g

for some non-negative function φ. In a neighbourhood of a point p ∈M \ {x ∈M,dΦ(x) = 0} map Φ is

a local diffeomorpism and

||∇(f ◦ Φ)|| = φ1/2||∇f || dVg = φ−n/2dVg0



Chapter 2. Width and Ricci Curvature 22

where f : M0 → R is a smooth function and dVg, dVg0 are volume elements.

The fact that the measure of the set {x ∈M,dΦ(x) = 0} is zero guarantees that limr→0 Voln(Φ−1(B0(a, r))) =

0 for all a ∈M0. Let r be the smallest radius, such that there exists a ballB(r, a) with Vol(Φ−1(B0(a, r))∩
U) = Voln(U)/(τ + 2).

Let d0 be the distance function on M0 and define f(x) = d0(a, x)|Φ(U) : Φ(U) → R+ to be the

distance from x ∈ Φ(U) ⊂M to a.

∫ 2r

r

Voln−1((f ◦ Φ)−1(t))dt =

∫
(f◦Φ)−1(r,2r)

||∇(f ◦ Φ)||dVg

≤

(∫
(f◦Φ)−1(r,2r)

||∇(f ◦ Φ)||ndVg

) 1
n (

Voln((f ◦ Φ)−1(r, 2r))
)n−1

n

≤ K
1
n

(∫
f−1(r,2r)

||∇0f ||ndVg0

) 1
n (

Voln((f ◦ Φ)−1(r, 2r))
)n−1

n

≤ 2rν
1
nK

1
n Vol(U)

n−1
n

It follows that the average of Voln−1((f ◦Φ)−1(t)) is smaller than 2ν
1
nK

1
n Vol(U)

n−1
n . We then take

Σ = (f ◦ Φ)−1(t), with area at most average. This finishes the proof of the analog of Theorem 2.5.1.

The rest of the proof of Theorem 2.8.1 proceeds exactly as in Section 2.7 with c(n) max{1,Vol0n(U)
1
n }

replaced by 2rν
1
nK

1
n .

We now recover Theorem 2.1.3. Let Sg denote a genus g closed surface with a complete Riemannian

metric. We write h for the metric on Sg.

The uniformization theorem for Riemannian surfaces guarantees that there is a metric φh of constant

sectional curvature in the conformal class of h. If g = 0 or g = 1 then the result follows from Theorem

2.8.1 by taking M0 to be S2, RP2, T 2 or the Klein botle K with the standard metric. In all of these

cases we have ν = π and τ = 6 (see Remark 2.8 below).

Suppose now that the surface is orientable and the genuse g > 1. Take φh to have constant sectional

curvature κ = −1. We now apply the Riemann-Roch theorem which gives a meromorphic function

Φ : Sg → S2 of degree at most g + 1. Since Φ is a ramified conformal covering map, it has at most

g + 1 points in each fiber and there are finitely many points where dΦ = 0. Applying Theorem 2.8.1 to

Φ gives a width volume inequality for surfaces of genus g > 1, we obtain:

W(Sg) ≤
8
√
ν(S2)

1−
√

τ(S2)+1
τ(S2)+2

√
(g + 1) Area(Sg)

Remark. Clearly ν(S2) = ν(R2) = π. It is well known that the smallest number of discs of radius 1

required to cover an annulus B(2) \ B(1) ⊂ R2 is 6. A similar covering also works on S2 so τ(S2) =

τ(R2) = 6. With these values of τ and ν we compute
8
√
ν(S2)

1−
√
τ(S2)+1

τ(S2)+2

≤ 220 which improves the upper bound

C ≤ 108 from [3].
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2.9 Volumes of hypersurfaces

In this section we prove Theorem 2.1.4.

Theorem 2.9.1. If M is a manifold with non-negative Ricci curvature then Wk(M) ≤ C(n)k
1
n Vol(M)

n−1
n .

Note that Theorem 2.9.1 is consistent with the conjecture that the sequence of numbers Wk(M)

obeys a Weyl type asymptotic formula (see [21] and the discussion in [39, §9]).

To prove Theorem 2.9.1 we will need to decompose M into open subsets of small sizes. Similar

arguments for bounding Wk have been used by Gromov [21],[23] and Guth [31].

Lemma 2.9.1. Let M be a closed Riemannian manifold with Ricci(M) ≥ 0. There exists a constant

C4(n), such that for any p there exists p′ ≤ p and a collection of open balls {Ui}p
′

i=1 with
⋃
Ui = M ,

Voln(Ui) ≤ C4(n)Voln(M)
p and Voln−1(∂Ui) ≤ C4(n)

(
Voln(M)

p

)n−1
n

.

Proof. It is a standard fact in comparison geometry that for any ballB(x, r) ⊂M we have Voln(B(x, 3r)) ≤
3n Vol(B(x, r)) and Voln−1(∂B(x, 3r)) ≤ 3n−1nω

1
n
n Voln(B(x, r))

n−1
n .

Both of these bounds can be deduced, for example, from the Bishop-Gromov inequality

Voln(B(x, r − ε))
ωn(r − ε)n

≥ Voln(B(x, r))

ωnrn

where ωn denotes the volume of a unit ball in Euclidean n-space.

To prove the second bound observe that Voln(B(x, r) \ B(r − ε)) ≤ nε
r Voln(B(x, r)) + O(ε2). Since

Voln(B(x, r)) ≤ ωnrn we can bound the volume of the annulus by nω
1
n
n ε(Voln(B(r)))

n−1
n +O(ε2). Since

Vol(3Bi) ≤ 3n Vol(Bi) we obtain that for every ε > 0 the volume of the annulus B(xi, 3ri)\B(xi, 3ri−ε)
is bounded by 3n−1nω

1
n
n εVol(B(xi, ri))

n−1
n + O(ε2). Hence, there must exist a sphere S(x, r′) in the

annulus, 3r − ε ≤ r′ ≤ 3r, with Voln−1(S(x, r′)) ≤ 3n−1nω
1
n
n Voln(B(x, r))

n−1
n + O(ε2). By curvature

comparison again the volume of a sphere can not suddenly jump up. Since ε was arbitrary we conclude

Voln−1(∂S(x, 3r)) ≤ 3n−1nω
1
n
n Voln(B(x, r))

n−1
n .

Now we construct a covering of M by disjoint balls of volume Voln(M)
p , such that balls of three times

the radius cover M . This is also standard (see [24]). For each x choose rx > 0 to be the radius of a ball

B(x, rx), such that Voln(B(x, rx)) = Voln(M)
p . By compactness there exists a finite subcollection of balls

B(x, rx) that cover M . By the Vitali covering lemma we can further choose a subcollection of disjoint

balls B1, . . . , Bk with radii r1, . . . , rp′ , such that balls of three times the radius cover M . Note that we

must have p′ ≤ p. Theorem now follows by taking Ui = 3Bi.

By Theorem 2.7.1 we have the following: for each open subset U of M there exists a family of

cycles Xt, for 0 ≤ t ≤ 1, sweeping-out U . Moreover, we have that X0 is a trivial cycle, X1 = ∂U and

Vol(Xt) ≤ Vol(∂U) + C(n) Vol(U)
n−1
n . For each i we let Xi

t be the family of cycles with the above

properties for the submanifold with boundary Ui \ (
⋃i−1
j=1 Uj). Let Vi =

⋃i
j=1 Uj for 1 ≤ i ≤ p′ and

Vi = ∅ otherwise. Define a family of mod 2 cycles Zt for 0 ≤ t ≤ p′ by setting Zt = ∂Vi−1 + Xi
t−[t] for

i− 1 ≤ t ≤ i, here [t] denotes the integer part of t. We identify the endpoints (which are trivial cycles)

and rescale so that Zt is parametrized by a unit circle.

Observe that for each t cycle Zt can be decomposed into two (n − 1)-cycles Zt = Z1
t + Z2

t with

Z1
t ⊂

⋃
∂Ui and Vol(Z2

t ) ≤ C4(n)
(

Vol(M)
p

)n−1
n

.
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Following Gromov [21] and Guth [31] we will now define a p-cycle F : RPp → Zn−1(M,Z2) which

detects the cohomology element λp. Consider a truncated symmetric product TP p(S1). Recall that the

symmetric product is defined as a quotient of (Z2 × S1)p by the symmetric group Sp. The truncated

symmetric product is then defined as a quotient of the symmetric product by an equivalence relation

1sj + 1sk = 0 if sj = sk and j 6= k. In [43] Mostovoy proved that TP p(S1) is homeomorphic to RPp

(we learnt about this from [31]). We define F (
∑p
i=1 aiti) =

∑p
i=1 aiZti . Alternatively, we could define a

map from RPp to Zn−1(M,Z2) with the desired property using zeros of real polynomials of one variable

with degree at most p as in [21, 4.2B] and [31, Section 5].

We claim that Vol(F (x)) ≤ C(n)p
1
n Vol(M)

n−1
n . Indeed, we may decompose each of the p summands

Zti = Z1
ti + Z2

ti with Z1
ti contained in the union of the boundaries of Ui’s and the volume of Z2

ti

bounded from above by a constant times (Vol(M)
p )

n−1
n . Since we are dealing with mod 2 cycles the

sum of all Z1
ti can not be greater than Vol(

⋃
∂Ui) ≤ C(n)p

1
n Vol(M)

n−1
n . We also have that the sum∑

Z2
ti ≤ C(n)p

1
n Vol(M)

n−1
n .

Finally, we show that F ∗(λp) = F ∗(λ)p 6= 0. Observe that S = {1·t : t ∈ S1} ⊂ TP p(S1) represents a

non-trivial homology class in H1(TP p(S1),Z2) and F (S) = {Zt}t∈S1 is a sweep-out of M by Proposition

1. It follows that F ∗(λ) = 1. This finishes the proof of Theorem 2.9.1.

We use this result to bound volumes of minimal hypersurfaces in a space with positive Ricci curvature.

These minimal hypersurfaces arise from Almgren-Pitts min-max theory as supports of stationary almost

minimizing integral varifolds. Pitts [48] and Schoen and Simon [51] proved that these hypersurfaces

are smooth embedded subamanifolds when n ≤ 7. In higher dimensions they may have singular sets of

dimension at most n− 8.

Marques and Neves [39] showed that every manifold M of dimension n, for 3 ≤ n ≤ 7, with positive

Ricci curvature possesses infinitely many embedded minimal hypersurfaces. Theorem 2.1.4 is an effective

version of their result. Note that for 2-dimensional surfaces an analogous result for periodic geodesics

is false. Morse showed that for an ellipsoid of area 1 with distinct but very close semiaxes the length of

the fourth shortest geodesic becomes uncontrollably large ([42]).

Proof of Theorem 2.1.4. Let Vk be the infimum of numbers such that there exists k distinct minimal

hypersurfaces of volume less or equal to Vk. By [39, Prop. 4.8] and results in Section 2 of the same

paper we may assume that each parametric width Wk can be written as a finite linear combination

Wk =
∑
aj Vj , where aj are integer coefficients. Moreover, when M has positive Ricci curvature (or,

more generally whenever M has the property that any two embedded minimal hypersurfaces in M

intersect) we have Wk = ajk Vjk for some positive integer ajk .

Let C = C(n) be the constant from Theorem 2.9.1 and define C ′ = 2
1

n−1C
n
n−1 . We proceed by

contradiction. Suppose

Vk > C ′Vol(M)
(
sysn−1(M)

)− 1
n−1 k

1
n−1

for some k. Let A(N) = {Wi ≤ N}. It follows from the proof of Theorem 6.1 in [39] that if Wi = Wi+1

for some i then there exists infinitely many hypersurfaces of volume at most Wi. Hence, we may assume

that Wi < Wi+1 for all i < k. By Theorem 2.9.1 we have that the number of elements in the set A(N)

satisfies #A(N) ≥ Nn

Cn Vol(M)n−1 −1. In particular, we compute #A(Vk) ≥ 2kVkV1
−1. On the other hand,

the set {ai Vi : ai ∈ N, ai Vi ≤ Vk} has at most kVk
V1

elements, which is a contradiction.



Chapter 3

Homological Filling and Bisection

Area

Introduction In this chapter we show that every 3-sphere can be coarsely bisected by a surface of

area at most 3 HF1(2d). This geometric bisection theorem holds without any curvature assumptions.

3.1 Background on Homological Filling Function

The proof techinque we use to show Theorem 3.1.1 is an adaptation of technique first developed by

Gromov in [25, §1.2]. The version of the technique that we employ was used by A. Nabutovsky and R.

Rotman in [45] to obtain the first curvature-free bounds on areas of minimal surfaces in Riemannian

manifolds.

Question 3.1.1. Let M be a Riemannian manifold homeormophic to a 3-disk satisfying: (i) diam(M) =

d, (ii) area(∂M) = A, (iii) and vol3(M) = V . Is it true that there is a homotopy St : ∂M × [0, 1]→M

such that: S0 = id∂M and S1 is a point and vol2(St) ≤ f1(A, d, V ) for some function f1?

Question 3.1.2. Let M be as above. Is it true that there is a relative 2-disc D splitting M in to two

regions of volume at least V/4 such that area(D) ≤ f2(A, d, V ) for some function f2?

These questions were inspired by the work of Ye. Liokumovich, A. Nabutovsky, and R. Rotman in

[38]. They proved that any Riemannian 2-sphere (M, g) can be swept-out by curves of length at most

200 diam(M) max

{
1, log

√
Area(M)

diam(M)

}
and showed that this bound is optimal up to a constant factor.

Liokumovich, Nabutovsky, and Rotman’s work was related to the work of S. Frankel and M. Katz [16].

For further refinements of that work, see Liokumovich [36] which constructs Riemannian 2-spheres which

are hard to sweep out by 1-cycles.

In work with Zhu, we give negative answers to Question 3.1.1 and Question 3.1.2. We do, however,

prove a positive result which majorizes the size of the disk in Question 3.1.2 by the homological filling

function and diameter of M (Theorem 3.1.1).

Papasoglu’s Question 3.1.1 is a natural extension of the following question asked by Gromov in 1992:

25
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Question 3.1.3. Consider all Riemannian metrics (D2, g) on the 2-disk such that: (i) the length of the

boundary is at most one and (ii) the diameter of the disk is at most one. Is there a universal constant

C such that: For every such metric there is a free homotopy of curves which contracts the boundary to

a point through curves of length at most C?

Frankel and Katz answered Gromov’s question negatively in [16]. They construct a metric on the disc

with a “wall” whose base is shaped like a regular binary tree with many nodes. Combinatorial properties

of the tree force any curve subdividing the nodes in to two equal parts to meet the edges of tree many

times. This curve will have to “climb over the wall” many times. This combinatorial obstruction forces

any contraction of the boundary of the disc to a point to contain a long curve. In our context we needed

to produce a large surface in any contraction of the boundary of D3 to a point. We did so by constructig

a metric which is concentrated around two solid tori embedded in D3 as a Hopf link. The fact that the

tori are linked forces any sweep-out of the 3-disk to meet one component of link transversally and hence

any sweep-out will contain a 2-cycle of large area.

In [18] we showed that any sweep-out of a 3-disk containing a pair of linked solid tori must contain

an essential loop on the boundary of one of the tori. This essential loop will bound some disk in the

solid torus. Our choice of the Riemannian metric on the solid tori forces any such disk to have a large

area.

Remark. Our construction of the metric above was inspired by D. Burago and S. Ivanov’s construction

of a metric on the 3-torus (T 3, g) such that any homologically non-trivial 2-cycle in T 3 has large area [7].

L. Guth remarked that such a construction should provide an example of a sphere which is hard to bisect

in [30].

We now describe the main result of this chapter.

Definition 3.1.1. Given a Riemannian 3-sphere M with diameter d and volume V , let

BA(M) = inf
Σ⊂M

{vol2(Σ) : M \ Σ = R1 tR2, vol3(Ri) >
1

6
V for i = 1, 2}

be the bisecting area of M . The infimum here is taken over all embedded surfaces Σ ⊂M .

We define

HF1(`) = sup
||z||1≤`

(
inf
∂c=z

vol2(c)

)
to be the first homological filling function. The supremum here is taken over all 1-cycles z satisfying

vol1(z) ≤ ` and the infimum computes the size of the smallest 2-cycle c filling z = ∂c.

Theorem 3.1.1. For any Riemannian 3-sphere (M, g) with M diffeomorphic to S3 we have:

BA(M) ≤ 3 HF1(2d)

where d is the diameter of (M, g).

Given a Riemannian 3-sphere (M, g) with diameter d and volume V , consider the hypersurfaces Σ

in M that subdivide M into two connected components, M \ Σ = R1 t R2, with both parts satisfying

vol3(Ri) >
1
6V . We claim that for any small δ > 0, there exists such a subdividing surface Σ with area

vol2(Σ) ≤ 3 HF1(2d+ δ) + o(δ2)
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By taking δ → 0, we obtain the result in Theorem 3.1.1. Our argument is derived from similar filling

arguments found in Nabutovsky and Rotman’s work on minimal hypersurfaces [45]. We prove the

claim above by contradiction: we show that if there is no such surface then the fundamental class

[M ] ∈ H3(M ;Z) is zero. During the proof we will try to construct a 4-chain which has the fundamental

class of M as its boundary; the proof is similar to a standard coning argument.

Proof of Theorem 3.1.1. Suppose there is no subdividing hypersurface Σ satisfying the bounds above.

Let us choose a triangulation X3 of M such that the length of each edge of the triangulation is

at most δ > 0, a small constant that we will eventually send to zero. We consider X3 as a simplicial

complex, though we have an identification of the vertices of X and points in M . For a simplicial complex

∆, we will use the notation [v0, v1, . . . , vk] to denote the k-simplex in ∆ with vertex set {v0, v1, . . . , vk}.
We will use notation ∆(k) for the k-skeleton of a complex. We now define the cone K to be the simplicial

cone over X, our triangulation of M , with an additional distinguished cone point [v?] ∈ K(0).

Let C∗(K) = Csimp
∗ (K;Z2) be the chain complex of simplicial chains in K with coefficients from Z2.

Let C∗(M) = Csing
∗ (M ;Z2) be the chain complex of singular chains in M with coefficients from Z2. We

use Z2 coefficients in order to avoid orientation issues1. We will define our chain map Ψ : C∗(K)→ C∗(M)

inductively skeleton by skeleton. Once we have defined Ψ on K(k), the k-skeleton of K, we extend it

linearly to Ck(K), the group of k-chains in K. As we work with Z2 coefficients, we will disregard the

order of the vertices.

We define Ψ as follows: For any vertex [v] 6= [v?] we define Ψ([v]simp
K ) = [v]sing

M , using our identification

of vertices of K with points in M . We send any simplex in K not meeting the coin point to the

corresponding singular simplex in X induced from our triangulation. That is, for a simplex [v1, . . . , vk] ∈
K such that {v1, . . . , vk} ∩ {v?} = ∅, we define Ψ([v1, . . . , vk]) = [v1, . . . , vk].

It remains to define Ψ on those simplices in K which meet the cone point. For edges meeting

the cone point we define Ψ([v?, vi]) to be a minimal geodesic from Ψ(v?) to Ψ(vi). We note that

Ψ(∂[v?, vi]) = ∂Ψ([v?, vi]) = Ψ([v?]) + Ψ([vi]) by construction; the sign is irrelevant since we work in Z2.

Observe that Ψ([v?, vi]) has length at most d.

To define Ψ on the 2-faces that meet the cone point we proceed as follows: We have that ∂[v?, vi, vj ] =

[v?, vi] + [vi, vj ] + [vj , v?]. This boundary has length at most 2d+ δ. Thus there is a 2-chain c such that

∂c = ∂[v?, vi, vj ] and vol2(c) ≤ HF1(2d+ δ). We define Ψ([v?, vi, vj ]) = c. The relation Ψ(∂[v?, vi, vj ]) =

∂Ψ([v?, vi, vj ]) follows from the construction. We have now defined Ψ on the entire 2-skeleton of K.

We note that the singular 2-cycles Ψ(∂[v∗, vi, vj , vk]) play a distinguished role in our construction;

they are our candidate bisecting surfaces. We name them z2
α,β,γ,? = Ψ(∂[α, β, γ, v?]) for α, β, γ ∈

K(0) \ {[v?]}. In Lemma 3.1.1 we will show that, under our assumption about subdividing surfaces,

each of the 2-cycles z2
αβγ? can be replaced by a 2-cycle ẑ2

αβγ? with the same support which, in addition,

bounds a small volume 3-chain φ̂3
αβγ?. Essentially ẑ2 removes any intersections of the chain z2 with itself

so that we can meaningfully talk about the two halves of M bounded by the chain. In Lemma 3.1.1 we

will also show that mass(φ̂3
αβγ?) ≤ 1

6V . Let us assume, for now, that Lemma 3.1.1 holds.

We define Ψ on those 3-simplices in K which meet the cone point. We will define Ψ to be the 3-chain

φ̂3 ∈ C3(M) from Lemma 3.1.1 filling z2 = z2
[vi],[vj ],[vk],?.

We now define Ψ on the four skeleton of K as follows: For a simplex [v?, vi, vj , vk, vl] consider the

3-chain formed by taking all the small volume fillings and an original 3-simplex σ3
ijkl = [vi, vj , vk, vl]

sing
M

1We thank Stefan Bilaniuk for this suggestion, see Footnote 1 on Page 8.
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from the triangulation of M . That is, consider:

ẑ3
ijkl? = φ̂3

ijk? + φ̂3
jkl? + φ̂3

kli? + φ̂3
ijl? + σ3

One can check that ∂ẑ3
ikjl? = 0 ∈ C2(M), since everything cancels in pairs. By construction we have

vol3(ẑ3
ijkl?) ≤ 4

6V + o(δ3). Thus, there is a point not in the support of ẑ3
ijkl? and we obtain that

ẑ3
ijkl? = ∂φ̂4

ijkl? for some φ̂4
ijkl? ∈ C4(M ;Z2) We define Ψ so that: Ψ([v?, vi, vj , vk, vl]) = φ̂4

ijkl?.

We have defined a chain map Ψ from C∗(K) to C∗(M). The image under Ψ of the sum of the

4-simplices of the K is a chain whose boundary is the fundamental class of M . To be precise, we have:

[M ] =
[∑

σijkl

]
=
[∑

ẑ3
ijkl?

]
=
[
∂
(∑

φ̂4
ijkl?

)]
The second equality holds since

∑
φ̂3
ijkl? = 0. We have now exhibited the fundamental class of M as a

boundary, and so [M ] = 0 ∈ H3(M ;Z2). We obtain a contradiction since H3(M ;Z2) = Z2 = 〈[M ]〉.

Lemma 3.1.1. Suppose that (M, g) is a Riemmanian 3-sphere such that for all embedded surfaces Σ ⊂
M we have the following: If mass2(Σ) ≤ 3 HF1(2d) and M \Σ = R1tR2 then mass3(Ri) ≤ 1

6V for i = 1

or i = 2. Given such an (M, g) we have that for any z2 = z2
αβγ? as above there is ẑ2 ∈ Z2(M,Z2) such

that: (i) supp(z2) = supp(ẑ2) and (ii) there is φ̂3 ∈ C3(M ;Z2) satisfying ∂φ̂3 = ẑ2 and mass3(φ̂3) ≤ 1
6V .

Proof. Let z2 be as above. First note that z2 is piecewise smooth by the Fleming Regularity Lemma [15,

13], since it is realized as a finite union of mass-minimizing surfaces in dimension three. We choose a

sufficiently fine triangulation of the image of z2 so that each simplex of the triangulation is a smoothly

embedded surface fi. We note that z2 =
∑
εifi where fi : ∆2 → M is smooth and εi ∈ Z. By the

mass2-minimality of z2 we have that εi = ±1. Now we work with Z2-coefficients.

Consider ẑ2 =
∑
fi ∈ C2(M ;Z2). We may perturb the image of ẑ2 so that it is in general position

in M . That is, the image of ẑ2 consists of: regular points, double arcs, triple points, and branch points

[8, Chapter 4].) We have mass2(ẑ2) = mass2(z2) because |εi| = 1 and the cycles have the same support.

By construction, ∂ẑ2 = 0. Thus there is φ̂3 such that ẑ2 = ∂φ̂3 since H2(M ;Z2) = 0.

We show that there must be a small volume filling of ẑ2. Suppose that mass3(φ̂3) ≥ 1
6V . Let ψ̂3

be a chain supported in M \ supp φ̂3 satisfying ∂ψ̂3 = ẑ2. We will prove that mass3(ψ̂3) < 1
6V by

contradiction. We will use ẑ2, φ̂3 and ψ̂3 to construct a subdividing surface whose area is at most

3 HF1(2d + δ) + o(δ2). That is, we will show there is a surface Σ such that: M \ Σ = R1 t R2 with

vol3(Ri) ≥ 1
6V and vol2(Σ) ≤ 3 HF1(2d+ δ) + o(δ2).

We now construct the surface Σ. We will first describe how to replace ẑ2 with a union of closed

embedded surfaces. Since ẑ2 is a piecewise smooth 2-cycle in S3 we may pick an open metric ball

B(p, η) ⊂ S3 \ supp(ẑ2) such that S3 \ B(p, η) is homeomorphic to the closed unit ball in R3. Let ρ be

this homeomorphism. Then ρ is C = C(p, η, g)-bilipschitz since its domain and target are both compact.

Consider image ρ(ẑ2) in R3. We want to replace this cycle with a union of closed surfaces. Let

Uε = ∂{x ∈ R3 : d(x, ρ(ẑ2) ≤ ε} be the boundary of the ε-neighbourhood of ρ(ẑ2). By Ferry [14] we

know that this is an embedded 2-manifold for an open dense set of ε ∈ R+. We choose ε to be sufficiently

small and we pick Vε to be a connected component of Uε which deformation retracts onto the image of

the cycle ρ(ẑ2). Then ẑ2
ε = ρ−1(Vε) is a union of closed embedded surfaces. Since ρ is C-bilipschitz we

can pick ε small enough so that |mass2(ẑ2)−mass2(ẑ2
ε )| ≤ ε.
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Figure 3.1: Construction of Σ: Take surfaces which are the boundary of a neighbourhood of ẑ2. Connect
the components by small tubes.

We now consider the surface Σ which is obtained in the following way: Add thin tubes to ẑ2
ε so as

to form one connected component. See Figure 3.1. We may do this while adding at most ε to both the

surface area of ẑ2
ε , and volume of supp(φ̂3). We let Σ be the boundary of supp(φ̂3

ε) union the thin tubes.

We have vol2(Σ) ≤ 3 HF1(2d+δ)+o(δ2)+2ε, and M \Σ = R1tR2. Note that vol3(Ri) >
1
6V −o(ε

3
2 ).

Taking ε→ 0 gives us a subdividing surface contradicting hypothesis about the subdivision area.
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Sponges

Introduction In this chapter, we establish two results concerning Larry Guth’s sponge problem. We

show that a generalized planar case of the problem is “computationally difficult”. We also show that

every small area open bounded set with nice boundary in the plane can be folded to fit in a strip.

While working on the euclidean width-volume inequality Larry Guth asked the following question:

Question 4.0.1 (Sponge Problem). Are there constants ε(n) such that: If U ⊂ Rn is a bounded open

set with µ(U) < ε(n) then there is an expanding embedding U → Bn(1) ⊂ Rn.

Definition 4.0.1. A map f : U → Rn is expanding if ||( df)xv|| ≥ ||v|| for all v ∈ TxU .

A positive answer to the Sponge Problem would provide a short and satisfying proof of the width-

volume inquality: use an expanding embedding to map the domain U in to a ball of appropriate radius

then sweep out the ball and pull back the sweep-out along the expanding embedding. Any expanding

embedding could only increase the size of cycles in the sweep-out so one obtains an upper bound on the

size of a sweep-out.

We impose

The sponge problem has a certain physically motivated reasonableness. A physical sponge has very

small volume but is diffuse in space. A sponge with volume ∼ 1/1000 L might hold or surround 1L of

water. The sponge problem asks if we can squeeze out the 1L of water through an expanding embedding.

That is, can such a general sponge be folded to fit in a sphere of radius 1cm? What about a sphere of

radius 1km? These questions remain unanswered.

In Section 4.1 we address the complexity of the problem in general. We show that the decision

problem: “Is there an expanding embedding U → V ?” for bounded planar sets U and V is NP-complete.

In Section 4.2 we solve a version of the sponge problem by constructing an expanding embeddings

U → R×[0, 5] for nice sets U . Our proof establishes a width-volume inequality for Jordan measurable

planar domains.

4.1 Computability and Sponges

In this section we address the question: “How hard is the sponge problem generally?” We do so by

showing that computationally difficult problems in combinatorics reduce to the problem of finding an

30
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expanding embedding between two planar regions. In order to be self-contained this section also contains

a very brief introduction to computational complexity theory.

Problem 4.1.1 (Expanding embedding existence). Given U and V , two nice subsets of R2, determine

whether there exists an expanding embedding f : U → V . See Definition 4.1.5 for the definition of nice.

We will show that determining whether there is an expanding embedding between two domains is at

least as difficult as showing checking whether a planar trivalent graph possesses a Hamiltonian cycle.

Definition 4.1.1. A graph Γ has a Hamiltonian cycle if there is a cycle of edges which visits each vertex

exactly once.

Problem 4.1.2 (Hamiltonian cycle). Given a planar trivalent graph Γ, determine whether Γ has a

Hamiltonian cycle.

It is well-known that Problem 4.1.2 is “algorithmically difficult” (NP-complete). To show that

determining the existence of an expanding embedding is difficult, we give a polynomial time reduction

from finding a Hamiltonian cycle in a graph to finding an expanding embedding. Thus, we show that

finding an expanding embedding between two planar sets is at least as hard as finding a Hamiltonian

cycle. Firstly, we introduce the relevant concepts for readers unfamiliar with computational complexity

theory.

Definition 4.1.2. Fix a finite alphabet Σ. A word w from Σ is a finite ordered list of elements of Σ.

We write w = σ1σ2 . . . σn for a word. We write Σ∗ for the set of all finite words from Σ. A decision

problem is a map D : Σ∗ → {Yes, No}. We write L(D) = {w ∈ Σ∗ : D(w) = Yes} for the language

determined by D.

Definition 4.1.3. A decision problem D is in P if: There is a deterministic turing machine M(D) and

constants C and k ∈ N such that: M(D) halts on all w ∈ Σ∗ of length n in time at most C · nk and

M accepts L(D). If the above holds we say that D is accepted by a deterministic turing machine in

polynomial time. A decision problem D is in NP if: D is accepted by a non-deterministic turing machine

in polynomial time.

Definition 4.1.4. A decision problem D is NP-complete if: D is in NP and every problem D′ in NP

admits a polynomial time reduction to D.

Remark. Decision problems which are NP-complete are generally considered “difficult to solve algorith-

mically”. The exact sense of this difficulty is caught up in deep problems such as P vs NP.

Definition 4.1.5. A set U ⊂ R2 is nice if it is a union of finitely many open balls of rational radius

centered at points with rational coordinates.

Remark. Any nice set is open, bounded, and can be specified with finitely much data.

Theorem 4.1.1. Given U, V ⊂ R2 two bounded open subsets of R2, it is NP-complete to determine

whether there exists an expanding embedding f : U → V .

Proof of Theorem 4.1.1. We construct U and V so that the problem of detecting a Hamiltonian cyle

in a planar trivalent graph (Problem 4.1.2) reduces to the problem of determining whether there is an

expanding embedding U → V .
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Fix a planar trivalent graph Γ. We construct V as follows: embed Γ in the plane. For each vertex of

Γ place a disk of radius 10 in the plane. Connect the disks by tubes of unit width according to Γ. Thus,

V is a vertex thickened copy of Γ in the plane. We construct U as an annulus of unit width with |V (Γ)|
balls of radius five along its circumference. Alternatively, U is a vertex thickened |V (Γ)|-cycle.

If there is an expanding embedding U → V then we can obtain a Hamiltonion cycle on Γ. We follow

the meridian path in the annulus U , and obtain a path which visits each thick vertex of V exactly one.

This completes the reduction.

Figure 4.1: The construction used to prove Theorem 4.1.1.

4.2 The Sponge Problem for the Strip

In this section we show that any small area Jordan measurable set in the plane admits an expanding

embedding to R×[0, 5]. This solves a problem analogous to the sponge problem. The result is sufficient

to establish a width-volume inequality for Jordan measurable open bounded sets in the plane. We recall

the notion of Jordan measurability.

Definition 4.2.1. An axis parallel rectangle in Rn is R = [R−1 , R
+
1 ]×[R−2 , R

+
2 ]×· · ·×[R−n , R

+
n ] satisfying

R−i < R+
i for i = 1, 2, . . . , n. A rectangle in Rn is any subset of Rn congruent to an axis parallel rectangle.

Definition 4.2.2. We say that E ⊂ Rn is Jordan measurable if:

sup
R⊂E

µ(R) = inf
E⊂S

µ(S) = µ(U)

where the supremum (resp. infimum) is taken over all finite unions of axes parallel rectangles contained

in (resp. containing) U .

Remark. Definition 4.2.2 is strictly weaker than the now standard notion of Lebesgue measurability.

Many Lebesgue measurable sets are not Jordan measurable, e.g. Q ⊂ R.

We may now state our result:

Theorem 4.2.1. If U is an open bounded Jordan measurable subset of the plane satisfying µ(U) < 1

then U admits an expanding embedding U → R×[0, 5].
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Remark. We note that the hypothesis “U is Jordan measurable” is probably not necessary, but serves

as a geometric finiteness condition that we use to rule out pathelogical sets. Recall the classical charac-

terization of Jordan measurability:

Theorem 4.2.2 (Lebesgue). An open bounded subset U in Rn is Jordan measurable iff µ(∂U) = 0.

Consider for a moment, an open dense subset U of B2(1000) with total measure µ(U) = 1/100. We

see U from afar as a disk of radius 1000 due to its density but the sponge problem would tell us that

U should can be expanded to fit in to a ball of radius 1/10. To deal the issue of this type of example,

we imposed the condition µ(∂U) = 0. If U is Jordan measurable then it (and its boundary) cannot be

dense and we see it at any scale as a thin network of filaments in the disk. This concludes our remarks

about Jordan measurability.

Our proof of Theorem 4.2.1 will rely on the following “plumbing” lemmas which describes how to

fold a number of thin rectangles in to the strip.

Lemma 4.2.1. For any `, L1, L2 > 0 there is an expanding embedding:

π = π`,L1,L2
: [0, `]× [0, 1]→ [0, L2 + 2`+ 2]× [0, L1 + `+ 1]

such that: (i) π(x, 0) = (x, 0), (ii) π(x, 1) = (L2 + 2` + 2 − x, 0), and (iii) the image of π does not

intersect the rectangle [`+ 1, `+ L2 + 1]× [0, L1].

Remark. We note that the map π = π`,L1,L2
folds the rectangle [0, `] × [0, 1] in to a horseshoe with

thickness `, height L1 + ` + 1, and width L2 + 2` + 2. One can see that the parameter L1 controls the

height of the horseshoe and L2 controls its width. The important point is that we can choose a rectangle

of arbitrary dimensions such that the image of π avoids this rectangle.

Proof of Lemma 4.2.1. We construct π out of two maps: a vertical stretch s, and a right angled bend b,

both of which are defined below. First we stretch the rectangle to have height 2L1 + L2 + 2. The final

additive constant is to give us two strips of unit height on which to perform two right hand turns. We

apply a right hand turn to the rectangles [0, `]× [L1, L1 + 1] and [0, `]× [L1 +L2 + 1, L1 +L2 + 2], both

of which have unit height. We note the following facts about the maps we use to construct π:

• The vertical stretch s = sL1,L2
(x, y) = (x, (2L1 + L2 + 2)y) is an expanding embedding for all

L1, L2 > 0.

• The right angle bend b = b`(x, y) =
(
(1 + `)− (1 + `− x) cos

(
π
2 y
)
, (1 + `− x) sin

(
π
2 y
))

is an

expanding embedding from [0, `] × [0, 1] to [0, ` + 1]2 which maps: b(x, 0) = (x, 0) and b(x, 1) =

(1 + `, 1 + `− x).

Lemma 4.2.2. Let S =
⊔N
i=0[x2i, x2i+1] be a finite union of disjoint closed intervals of total length `.

Label the intervals so that x0 < x1 < · · · < xn < x2N+1. Let `i = x2i+1 − x2i denote the length of the

interval [x2i−1, x2i]. Let Li = x2i − x2i−1 denote the space between adjacent intervals.

For any Λ > 0 and 0 < ε < min{Li} there is an expanding embedding P : S × [0, ε]→ R×[0, `+ εN ]

such that: P (x, 0) = (x, 0) and if x ∈ [x2i, x2i+1] then

P (x, 1) =

([
2
∑

`k + 2
∑

Lk + Λ + 2Nε
]
−

i−1∑
`k −

i−1∑
Lk − iε− x, 0

)
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Remark. The claim above is significant because the strip has height independent of Li, the spacing

between the intervals. The height of the strip only depends on the original length of the intervals and

a term which we can control by varying ε. The construction, in effect, “squeezes out the space between

the intervals”.

Proof of Lemma 4.2.2. One applies a scaling argument to change the height of the domain from ε to

one, and then applies Lemma 4.2.1 to the image of each rectangle [x2i, x2i+1] × [0, ε]. By nesting the

horsehoes we obtain a map. The proof is inductive, and uses Lemma 4.2.1 as a base case. Scaling back

to height ε we obtain another map. We may stretch horizontally in order to introduce a Λ to vary the

length of the image. This completes the construction.

Proof of Theorem 4.2.1. We construct an expanding embedding from U to R×[0, 5] using the plumbing

construction. Since U is Jordan measurable we may assume that U in a finite union of axis parallel

rectangles. If not, we may pass to superset of U which has these properties. We can find U ′, a finite

union of rectangles, such that U ⊂ U ′ and µ(U ′) < 1. We may freely replace U with U ′ if needed.

We now apply a slight rotational perturbation to U in order to ensure that f(t) = H1(U ∩ {y = t}) is

piecewise linear and continuous. The co-area formula applied to U gives us:

∫ 1

0

(∑
k∈Z

f(k + t)

)
dt = µ(U) < 1

By Chebyshev’s inequality, we may pick a t ∈ [0, 1] such that
∑
k∈Z f(k + t) < 1. We now use these

small cuts to construct and expanding embedding in to the strip. To apply Lemma 4.2.2 we proceed

as follows: For each k we may cover the set U ∩ {y = k + t} by a thin rectangles of height ε and total

length ` < 1. We apply Lemma 4.2.2 to these thin rectangles. To do so: we pick Λ = 2 diam(U) and

ε small enough so that εN < ` where N is the number of disjoint intervals in the cut. This “unfolds”

U along the cut. For each integer k we unfold along the cut y = k + t as in Figure1 4.2. We unfold on

the bottom of the cut, and then on the top of the cut, altering the orientation for each cut. Since U

is bounded we only need to apply finitely many unfolding operations. The total height of the strip we

map in to is at most 1 + 2`+ 2` = 1 + 4` < 5. This completes the construction.

Figure 4.2: The proof of Theorem 4.2.1.

1“To a Mathematician, a ‘proof by picture’ is not a proof at all. For while it is true that ‘a picture is worth a thousand

words’, often many of those words will be outright lies – or, at best, misrepresentations of the truth” — Tom Storer [53]
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