Problem Solving Group

Playing with problems together.

Parker Glynn-Adey May 16, 2023

Contents:

- \bullet Zeitz $\S 2.2$ Strategies for Getting Started
 - Get your hands dirty
 - Make it easier
- Division
 - Sums of reciprocals
 - Continued fractions
 - Euclidean division

1 General Problem Solving Advice

Make it easier Often, a contest problem is "hidden" or "veiled" by a layer of additional complexity that is easily removed. Reducing to a simpler problem can remove that layer.

Question 1.1 (Putnam B1 1990) Find all real-valued continuously differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that:

$$(f(x))^2 = \int_0^x \left[(f(t))^2 + (f'(t))^2 \right] dt + 1990$$

Get your hands dirty One thing that often helps with a discrete question is to compute some cases. If you are lucky, surprising patterns emerge that you can exploit to solve the problem.

Question 1.2 (Zeitz 2.2.11) Consider the function $f: \mathbb{N} \to \mathbb{N}$ such that: f(1) = 1, f(2n) = f(n), f(2n + 1) = f(2n) + 1. Give an algorithm (at most one sentence long) for computing this function.

2 Division

In this mini-section, I give an example of a problem that I wanted to solve. The solution involved a significant amount of messing around with cases. The three questions follow my path of "looking for a simpler problem".

Question 2.1 (Bollobás – Cambridge p.49) Show that every rational number 0 < r < 1 can be written as a sum of reciprocals of distinct natural numbers. That is, for any 0 < r < 1 there are $n_1 < n_2 < \cdots < n_N \in \mathbb{N}$ such that:

$$r = \sum_{k=1}^{N} \frac{1}{n_k}$$

Question 2.2 Show that every rational number $r \in \mathbb{Q}$ can be written as a finite continued fraction.

$$r = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

Question 2.3 Show that for any $a, b \in \mathbb{Z}$ with $b \neq 0$ there are $q, r \in \mathbb{Z}$ with $0 \leq |r| < b$ such that: a = bq + r.

3 A Putnam Continued Fraction

Question 3.1 (Putnam B4 1990) Express $\sqrt[8]{2207 - \frac{1}{2207 - \frac{1}{2207 - \dots}}}$ in the form $(a + b\sqrt{c})/d$, where a, b, c, d are integers.

Problems worthy of attack prove their worth by hitting back.

Piet Hein