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A crash course on Polish spaces

Preliminary notions

For the following definitions, we let X be a set equipped with a
topology T.

Definition
We say that D C X is dense in X if DN U # () for any U € 7.

Definition

We say that X is separable if it contains a countable dense set.
For example, R with its usual topology is separable since Q is
dense in R.
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A crash course on Polish spaces

Preliminary notions cont.

We say that X is metrizable if there exists a metric d on X such
that 7 is equal to the topology induced by d.

Definition

We say that (X, d) is complete if every Cauchy sequence in X
converges to a point in X.
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A crash course on Polish spaces

Preliminary notions cont.

Definition
We say that Y is Gs in X if Y = [ U, where U, € 7. We say
neN
that Yis F, in X if Y = [J US where U, € 7. Note that the
neN

complement of a G set is F, and vice versa.
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A crash course on Polish spaces

Preliminary notions cont.

Definition

Let {X;}ic/ be a collection of topological spaces and define
X :=[];c; Xi- The product topology on X is the smallest
topology on X such that all projection maps are continuous.

Basic open sets in X are of the form [];., U; where U; is open in
X; and U; = X; for all but finitely many U;.
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A crash course on Polish spaces

What is a Polish space?

A Polish space is a separable, completely metrizable topological
space.

Remark

Note that Polish spaces are completely metrizable, not complete
with respect to a specific metric: i.e (0,1) as a subspace of R with
the usual topology is not complete, but there exists a complete
metric on (0,1) (ex. any homeomorphism from (0,1) to R induces
a complete metric on (0, 1)).
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A crash course on Polish spaces

Examples of Polish spaces

Some simple examples of Polish spaces:
o R"

o RV

o C"

o CN

@ The n-dimensional cube

°

Any countable set with the discrete topology
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A crash course on Polish spaces

Special Examples of Polish spaces

The Cantor space, denoted C, is defined by C := {0, 1} equipped
with the product topology.

The Hilbert cube, denoted IV, is defined by I := [0, 1]Y equipped
with the product topology.

The Baire space, denoted A, is defined by A := NN equipped with
the product topology.
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A crash course on Polish spaces

Polish subspaces of Polish spaces

Theorem

If X is metrizable and Y C X is completely metrizable, then Y is
Gs in X. Conversely, if X is completely metrizable and Y C X is

Gs, then Y is completely metrizable. In particular, a subspace Y of
a Polish space X is Polish iff Y is Gs in X.
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A crash course on Polish spaces

Polish spaces and the Hilbert cube

Theorem

Every separable metrizable space is homeomorphic to a subspace of
IN. In particular, Polish spaces are, up to homeomorphism, G
subspaces of the Hilbert cube.
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The Cantor space

Some definitions

A point x in a topological space is an isolated point if {x} is open.

A point x in a topological space is a limit point if it isn't an
isolated point.

A space is perfect if it contains no isolated points.

A point x in a topological space is a condensation point if every
open neighbourhood of x is uncountable.
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The Cantor space

Some definitions cont.

We can think of C as a tree, which motivates the following
definition:

Definition

A Cantor scheme on a set X is a collection (As),_on of subsets of
X satisfying:

0 AcgNAs—1 =0 forse2<N

0 A, C A, forsc2<N ic{0,1}
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The Cantor space

Some definitions cont.
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The Cantor space

Embedding the Cantor space

Let X be a non-empty, perfect Polish space. Then there is an
embedding of C into X.
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The Cantor space

The Cantor-Bendixson theorem

Cantor-Bendixson Theorem

If X is a Polish space, then X can be uniquely written as
X = PU C where P is perfect in X and C is open and countable.

Corollary

Any uncountable Polish space contains a copy of C and thus has
cardinality c.
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The Cantor space

Borel sets

Definition
Given a set X, we say that M C P(X) is a o-algebra on X if M is
closed under countable unions and complements.

Given A C P(X), we refer to the smallest o-algebra containing A
as the o-algebra generated by A.

Definition
The class of Borel sets of a topological space X is the o-algebra
generated by the open sets of X.
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The Cantor space

Borel sets (cont.)

Theorem

Let (X, 7) be Polish and let A C X be Borel. Then there is a
Polish topology 74 2 7 such that 7 and 74 generate the same
Borel sets and A is clopen in 74.
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The Cantor space

The perfect set theorem for Borel sets

Perfect set theorem for Borel sets

Let (X, 7) be Polish and A C X be uncountable and Borel. Then
A contains a copy of C.

Proof: We extend 7 to 74 in which A is clopen and Borel sets of
T4 are Borel sets of 7. Since A is closed in 74, it's G5 and therefore
Polish. Since A is uncountable and Polish, by Cantor-Bendixson A
contains a copy of C.
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Measure and category

Null and meager sets

Definition
Given A C R, we say that A has Lebesgue measure 0 or that A is
a null set if, for any € > 0, A can be covered by some {/,}pen

where I, is an open interval and ) length(/,;) < e.
neN

Definition
Given U C R, we say that U is nowhere dense in R if the closure
of U has empty interior. We say that A C R is meager if

A = |J U, where each U, is nowhere dense in R.
neN
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Measure and category

Baire category

RENEILS

If AC R is meager, it is said to be of first category. If A is
non-meager, it is said to be of second category. We will avoid
this convention to prevent confusion.
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Measure and category

The Baire category theorem

Baire category theorem

If X is completely metrizable, then it satisfies the following
equivalent conditions:

@ Every non-empty open subset of X is non-meager.
@ Every comeager set in X is dense in X.

@ The intersection of countably many dense open sets in X is
dense.
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Measure and category

Proof: Let {U,}nen be dense open and let U be open in X. We
will show that () U, N U # 0.

neN
Note that U; N U # 0 so construct a sufficiently small
By C Uy N U such that By C Uy N U. Then BN Us # 0 so
construct a smaller B, C U, N By such that B, € By N U». Repeat
this process inductively.

Let x; be the centre of B;. Then (x;) is a Cauchy sequence and by

completeness x; - x € (B, C () U, N U.
neN neN
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Measure and category

The continuum hypothesis

Definition
We define Xy := |N|; a set S is countable if |S| < Ry and

uncountable otherwise. We denote the first uncountable ordinal
by Nl.

The continuum hypothesis

The continuum hypothesis (denoted CH) is the statement that
¢ = Ny, or equivalently that if A C R is uncountable then |A| = c.

It has been shown that CH is independent of ZFC, meaning that
we can freely assume either CH or = CH without contradiction.
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Measure and category

Duality of measure and category

Assume CH. Then, if ¢ is a statement about subsets of R and ¢*
is the same statement but with all occurrences of " Lebesgue
measure 0" replaced with "meager” or vice versa, then

p <= @*. This is thanks to the following result:

ErdGs-Sierpinski theorem

Assume CH. Then there exists a bijection f : R — R such that, for
any A C R, Ais null iff f(A) is meager and vice versa.
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Measure and category

Duality of measure and category cont.

There exist disjoint F, G C R such that F is null, G is meager and
FUG=R.

Proof: Enumerate Q by {qg;}ien and for n € N define

Up = U(qi — 2%7%* 21%) Then F := () Uy is null and
ieN neN
G := F€ is meager.
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Measure and category

Duality of measure and category cont.

Lemma
If F, G C R are null and meager respectively, there exist

respectively null and meager F*, G C R such that
FCFT,GC G and |F"\F|=|GT\G|=c.

Proof (sketch): WLOG, G is F,. Then G€ is Polish and comeager,
and therefore uncountable by the Baire category theorem, so it
contains a copy of C by Cantor-Bendixson, so define Gt := G UC.

WLOG, F is Borel, so F€ is Borel and uncountable, and so by the
perfect set theorem it contains a copy of C. Let {g;};eny C C be
dense and for n € N define Uy, := |J (i — 547, i + 555). Then
ieN
F*t:=FU () U, is our desired null set.
neN
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