Enumerative Geometry: Past, Present, and Future

Gabriel Ong (Bowdoin College)
Joint with P. Breiding (Osnäbruck), J. Lindberg (UT Austin), and L. Sommer (Leipzig) Joint with A. Seigal (Harvard)

What is Enumerative Geometry?

Enumerative geometry asks geometric questions of the form "how many" and expects answers in \mathbb{N}.

What is Enumerative Geometry?

Enumerative geometry asks geometric questions of the form "how many" and expects answers in \mathbb{N}.

Question (Euclid, 300 BCE)

Given two points in the plane, how many lines pass through both points?

What is Enumerative Geometry?

Enumerative geometry asks geometric questions of the form "how many" and expects answers in \mathbb{N}.

Question (Euclid, 300 BCE)

Given two points in the plane, how many lines pass through both points?
Question (Apollonius, 200 BCE)
Given three circles in the plane, how many circles are tangent to all three?

What is Enumerative Geometry?

Enumerative geometry asks geometric questions of the form "how many" and expects answers in \mathbb{N}.

Question (Euclid, 300 BCE)

Given two points in the plane, how many lines pass through both points?
Question (Apollonius, 200 BCE)
Given three circles in the plane, how many circles are tangent to all three?
Question (Steiner, 1850s)
Given five conic sections in the plane, how many conic sections are tangent to all five?

Some Answers

Question (Euclid, 300 BCE)

Given two points in the plane, how many lines pass through both points?

Some Answers

Question (Euclid, 300 BCE)

Given two points in the plane, how many lines pass through both points?

Euclid, 300 BCE

There is one line passing through two points in the plane.

Some Answers

Question (Apollonius, 200 BCE)

Given three circles in the plane, how many circles are tangent to all three?

Some Answers

Question (Apollonius, 200 BCE)

Given three circles in the plane, how many circles are tangent to all three?

Apollonius, 200 BCE

Given three circles in the plane, there are eight circles tangent to all three.

https://mathworld.wolfram.com/ApolloniusProblem.html

Some Answers

Question (Steiner, 1850s)
Given five conic sections in the plane, how many conic sections are tangent to all five?

Some Answers

Question (Steiner, 1850s)

Given five conic sections in the plane, how many conic sections are tangent to all five?

Chasles/de Jonriques, 1860

Given five conic sections in the plane, there are 3264 conic sections tangent to all five.

The Geometry of Circles

A circle in the plane is determined by three parameters: the two coordinates for its center, and its radius.

A circle with center (a, b) and radius r has equation

$$
(x-a)^{2}+(y-b)^{2}-r^{2}=0 .
$$

Answers to Enumerative Problems

The answer to a "how many" question should be a finite natural number.

Answers to Enumerative Problems

The answer to a "how many" question should be a finite natural number. An answer of 0 or infinity would not be very satisfying.

Answers to Enumerative Problems

The answer to a "how many" question should be a finite natural number. An answer of 0 or infinity would not be very satisfying.

- The condition "the circle C is tangent to a given circle $C^{\prime \prime}$ " is a 1-dimensional constraint on the 3-dimensional space of circles. In other words, given a circle C^{\prime}, there is a 2-dimensional family of circles C that are tangent to C^{\prime}.
- Having a circle C being simultaneously tangent to three circles C_{1}, C_{2}, C_{3} is equivalent to these three 2-dimensional subspaces of the 3-dimensional space of circles intersecting.
- Three surfaces (2-dimensional subspaces) of a 3-dimensional space meet in a 0-dimensional (finite) set.

Question (Apollonius, 200 BCE)

Given three circles in the plane, how many circles are tangent to all three?

Circles Tangent to Three Conics

Question (Breiding, 2018)

Given three conics in the plane, how many circles are tangent to all three?

Figure 1 of arXiv: 2211.06876.

Circles Tangent to Three Conics

Question (Breiding, 2018)
Given three conics in the plane, how many circles are tangent to all three?

Circles Tangent to Three Conics

Question (Breiding, 2018)
Given three conics in the plane, how many circles are tangent to all three?

Emiris and Tzoumas, 2005

Given three ellipses in the plane, there are at most 184 circles tangent to all three.

Circles Tangent to Three Conics

Question (Breiding, 2018)

Given three conics in the plane, how many circles are tangent to all three?

Emiris and Tzoumas, 2005

Given three ellipses in the plane, there are at most 184 circles tangent to all three.

Breiding-Lindberg-O.-Sommer, 2022

Given three general conics in the plane, there are exactly 184 circles tangent to all three.

A White Lie

The following theorems were proved over \mathbb{C} and boil down to counting the number of roots of (multivariate) polynomials.

A White Lie

The following theorems were proved over \mathbb{C} and boil down to counting the number of roots of (multivariate) polynomials.

But a degree n polynomial over \mathbb{R} need not have n roots.

A White Lie

The following theorems were proved over \mathbb{C} and boil down to counting the number of roots of (multivariate) polynomials.

But a degree n polynomial over \mathbb{R} need not have n roots.

Question

What versions of the above theorems hold over \mathbb{R} ?
Questions in real enumerative geometry are of intrinsic interest, but are also linked to questions in applied mathematics.

A White Lie

The following theorems were proved over \mathbb{C} and boil down to counting the number of roots of (multivariate) polynomials.

But a degree n polynomial over \mathbb{R} need not have n roots.

Question

What versions of the above theorems hold over \mathbb{R} ?
Questions in real enumerative geometry are of intrinsic interest, but are also linked to questions in applied mathematics.
It makes sense to tell a robot to move 2.1 m forward, less so to move $1.3+2 \sqrt{-1} \mathrm{~m}$ forward.

Real Enumerative Problems

Real enumerative geometry asks questions about real geometric objects of the form "how many" and expects answers in \mathbb{N}.

Real Enumerative Problems

Real enumerative geometry asks questions about real geometric objects of the form "how many" and expects answers in \mathbb{N}.

Question (a la Euclid, 300 BCE)

Given two real points in the real plane, how many real lines pass through both points?

Question (a la Apollonius, 200 BCE)

Given three real circles in the real plane, how many real circles are tangent to all three?

Question (a la Steiner, 1850s)

Given five real conic sections in the plane, how many real conic sections are tangent to all five?

What can be done over the real numbers?

Over \mathbb{R}, we lose "invariance of number". We no longer have well-defined solution counts. Solutions appear in a range, just as a quadratic polynomial can have 0 or 2 roots.

What can be done over the real numbers?

Over \mathbb{R}, we lose "invariance of number". We no longer have well-defined solution counts. Solutions appear in a range, just as a quadratic polynomial can have 0 or 2 roots.

Euclid, 300 BCE

Given two real points in the real plane, there is exactly one real line passing through both.

Pedoe, 1970

Given three real cicles in the real plane, there can be $\{0,1,2,3,4,5,6,8\}$ real circles tangent to all three.

Steiner's Problem - Real-ly

Let us consider Steiner's problem over \mathbb{R}.

Ronga, et. al., 1997

There exists a configuration of five real conics in the real plane with 3264 real conics tangent to all five.

Question

What numbers of conics tangent to five conics can be attained? Can you give a list as in the case of the real Apollonius' problem?

Real Circles Tangent to Three Conics

Question (Breiding, 2018)

Given three conics in the plane, how many circles are tangent to all three? How many of the tangent circles can be real?

Real Circles Tangent to Three Conics

Question (Breiding, 2018)

Given three conics in the plane, how many circles are tangent to all three? How many of the tangent circles can be real?

Breiding-Lindberg-O.-Sommer

There exists a configuration of three real conics with 136 real tangent circles.

Breiding-Lindberg-0.-Sommer

For every $k \in\{0,2,4, \ldots, 136\}$, there exists a configuration of three real conics with k real tangent circles.

Real Circles Tangent to Three Conics

Question (Breiding, 2018)

Given three conics in the plane, how many circles are tangent to all three? How many of the tangent circles can be real?

Breiding-Lindberg-0.-Sommer

There exists a configuration of three real conics with 136 real tangent circles.

Breiding-Lindberg-0.-Sommer

For every $k \in\{0,2,4, \ldots, 136\}$, there exists a configuration of three real conics with k real tangent circles.

Conjecture

There are at most 136 real tangent circles.

Real Circles Tangent to Three Conics

Classifying Solutions

A conic is determined by its 6 coefficients

$$
a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6}
$$

so a configuration of three conics is determined by $3 \times 6=18$ coefficients.

Question

Given three conics (as defined by a vector of length 18), how many real circles are tangent to all three?

Classifying Solutions

Machine learning provides us a powerful tool for understanding the real solution structure of this tangency problem.

Algebraic Geometry and Machine Learning

> Referee's Report
> "I am skeptical on the general feasibility of the machine learning approach for classification problems in (real) algebraic geometry, but this is rather a philosophical comment and it is clear that the question by itself is interesting ..."

Algebraic Geometry and Machine Learning

Referee's Report

"I am skeptical on the general feasibility of the machine learning approach for classification problems in (real) algebraic geometry, but this is rather a philosophical comment and it is clear that the question by itself is interesting ..."

How else can we use machine learning in (real) geometry?

Discriminants

Definition (Discriminant)

The discriminant is a subspace dimension $n-1$ in the n-dimensional space of coefficients that tells us when a polynomial has a root of multiplicity.

Discriminants

Definition (Discriminant)

The discriminant is a subspace dimension $n-1$ in the n-dimensional space of coefficients that tells us when a polynomial has a root of multiplicity.

We have already seen one example of this in high school: the quadratic discriminant $b^{2}-4 a c$ tells us if a degree 2 polynomial with real coefficients

$$
a x^{2}+b x+c \in \mathbb{R}[x]
$$

has 0 or 2 real roots.

Discriminants

Definition (Discriminant)

The discriminant is a subspace dimension $n-1$ in the n-dimensional space of coefficients that tells us when a polynomial has a root of multiplicity.

We have already seen one example of this in high school: the quadratic discriminant $b^{2}-4 a c$ tells us if a degree 2 polynomial with real coefficients

$$
a x^{2}+b x+c \in \mathbb{R}[x]
$$

has 0 or 2 real roots.
In work forthcoming work with Anna Seigal, we show that we can "learn" the quadratic discriminant $b^{2}-4 a c$ to high accuracy:

$$
b^{2}-4.00142606023 a c
$$

Geometry, Computation, and the Past

In the past, enumerative geometry has been the source of many beautiful questions in mathematics.

Tetrahedron

Hexahedron

Octahedron

(Left) The Platonic solids. (Right) Clay tablet IM 67118 with computations of Pythagorean triples, Iraq museum.
(Left) https://link.springer.com/chapter/10.1007/978-981-16-6108-2_8
(Right) https://en.wikipedia.org/wiki/IM_67118

Geometry, Computation, and the Present

In the present, we have seen how these classical questions are closely tied to problems that arise both within mathematics and in applications.

(L) https://www.worldscientific.com/worldscibooks/10.1142/5763\#t=aboutBook
(C) http://math.bu.edu/people/jbala/2020BalakrishnanMuellerNotes.pdf
(R) https://bookstore.ams.org/gsm-194/

Geometry, Computation, and the Present

Today, we are also very lucky to have a wide range of computational tools to apply to our mathematical problems.

- Computational commutative algebra and algebraic geometry in Macaulay2
- Computational number theory in SageMath
- Numerical algebraic geometry in HomotopyContinuation.jl
- Computational group theory in GAP
- And many more...

Geometry, Computation, and the Future

But this is only the beginning of the fruitful interaction between geometry and computation.

Geometry, Computation, and the Future

But this is only the beginning of the fruitful interaction between geometry and computation.

Agarwal-Duff-Leiblich-Thomas, Breiding-Rydell-Shehu-Torres, \& Others.
How is geometry connected to computer vision?

Geometry, Computation, and the Future

But this is only the beginning of the fruitful interaction between geometry and computation.

Agarwal-Duff-Leiblich-Thomas, Breiding-Rydell-Shehu-Torres, \& Others.
How is geometry connected to computer vision?
Hilbert, Matiyasevich-Robinson-Davis-Putnam, Poonen, \& Many Others.
Are there algorithms that tell us if integer solutions exist to a polynomial?

Geometry, Computation, and the Future

But this is only the beginning of the fruitful interaction between geometry and computation.

Agarwal-Duff-Leiblich-Thomas, Breiding-Rydell-Shehu-Torres, \& Others.
How is geometry connected to computer vision?
Hilbert, Matiyasevich-Robinson-Davis-Putnam, Poonen, \& Many Others.
Are there algorithms that tell us if integer solutions exist to a polynomial?
Brandenberg-Hasse-Tran, Brandenberg-Hollering-Portakal, \& Others.
What can geometry tell us about auctions and game theory?

Geometry, Computation, and the Future

But this is only the beginning of the fruitful interaction between geometry and computation.

Agarwal-Duff-Leiblich-Thomas, Breiding-Rydell-Shehu-Torres, \& Others.
How is geometry connected to computer vision?
Hilbert, Matiyasevich-Robinson-Davis-Putnam, Poonen, \& Many Others.
Are there algorithms that tell us if integer solutions exist to a polynomial?
Brandenberg-Hasse-Tran, Brandenberg-Hollering-Portakal, \& Others.
What can geometry tell us about auctions and game theory?

There are many more questions and connections for you to go out there and explore.

Thank You. Questions?

