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Presenting the Problem
● Getting a function to spit out the right vector if 

we feed it the right numerical input

● Seems straightforward, but...



  

Presenting the Problem
● I may not know the function, only certain points

Image credit: [1]



  

Presenting the Problem
● An image is an array of numbers (classification 

problem!)

Image credit: [2]



  

Presenting the Problem
● Even words can be converted to numbers

– This is how you make chat bots!

[3]

Image credit: [3]



  

Artificial Neurons
● Building blocks of neural networks

– Inputs

– Weights

– Summation

– Activation function
● Ex: threshold,

sigmoidal

Image credit: [4]Image credit: [4][4]



  

Artificial Neural Networks
● Chain multiple neurons together

– Series of linear and
nonlinear transformations
allows for input to
be ‘converted’
to correct output

[5] Image credit: [5]



  

Forward Propagation Walkthrough

Image credit: [5]



  

DEF: Two sets of points A and B R⊆ n are linearly separable 
if there exist n + 1 points w0 , ..., wn such that for any point a 
in A,                       , and for any point b in B,  

● Effectively, two sets are linearly separable if there exists 
some hyperplane that separates the two sets

[6]



  

Why this is necessary: Linear separability

● What an individual node without an activation function does is 
place an input above/below a hyperplane

● What if data is not linearly separable?

– Drawing a line will not help me
separate these two groups

– So the network won’t be able
to tell the difference in its output!

[6] Image credit: [7]



  

● Multiple nodes, layers, and nonlinear activation transform our 
data to something linearly separable

[8]; Image credit: [8]



  

● Given an input, so long as the weights are correct, an ANN will 
return an output with a numerical value that either:

– Represents the ‘class’ of the input

– Is the image of the input, as transformed by some unknown 
(approximated) function

REGARDLESS OF WHETHER OR NOT THE INPUT CAN BE 
LINEARLLY SEPARATED INTO OUTPUT CATEGORIES

[6]

Part 1 Summary: Artificial Neural Networks Work!



  

The next problem: Weights?
● How do we determine weights?

– Training!

Image credit: [9]



  

Backpropagation
● Backpropagation is how we train ANNs

– Weight-update algorithm

● Basic concept

1)Forward propagate training data

2)Calculate error

3)Update weights to minimize error

4)Repeat

[10]



  

Backpropagation
● STEP 1: Forward propagate the data

– This is just a normal forward pass

– We get a result, which may or may not be ‘correct’

[10]



  

Backpropagation
● STEP 2: Calculate error

DEF: for some piece of training data x, let yt be the expected 
(correct) output, and let ye be the actual output of the network

● Define some differentiable error function E(yt , ye) that represents the 
error between the expected and actual outputs

– We call the error of the output the “loss”

– We want to MINIMIZE LOSS

[10]



  

Backpropagation
● STEP 3: Update weights to minimize loss

– Use the backpropagation algorithm, which employs the 
chain rule

– Recall the gradient of a function is a vector of the partial 
derivatives of the function wrt each component

● If the gradient is positive in a direction, the function is 
increasing in that direction

[10]



  

Backpropagation
● Remember, we want to minimize E 

– Get the gradient of E to zero

● E is a function of the output, and thus a function of the input 
and the weights {w1 , ... , wk}

– If        is positive, E is increasing as wi does, so we want to 
decrease wi   

[10]



  

Backpropagation
● Weight update rule:

 is the learning rate of the network

[10]



  

Backpropagation
● How do we find the partial derivative wrt wi? Chain rule!

● E is a function of ye

● ye is a function of the 
layer’s input, z

● z is a function of the 
previous layer’s output
and the weights

[10] Image credit: [11]



  

Backpropagation
● How do we find the partial derivative wrt wi? Chain rule!

● E is a function of ye,i

● ye is a function of the 
layer’s input, z

● z is a function of the 
previous layer’s output
and the weights

[10] Image credit: [11]



  

Backpropagation
● How do we find the partial derivative wrt wi? Chain rule!

[10] Image credit: [11]



  

Backpropagation
● In summary:

1)Forward pass

2)Calculate loss

3)Backpropagate and weight update

4)Rinse and repeat until loss has been minimized

[10]



  

Backpropagation
● So that’s how you train a neural net!

– There are some other tweaks you can make

– There are some issues
● Local minima
● Fine-tuning learning rate

[10] Image credit: [12]



  

Intuitively, what’s happening?
● By adjusting weights, ANNs pick out which inputs are 

important in certain circumstances
– The weights are chosen to notice patterns in inputs, and produce 

different outputs with the same weights, depending on the 
presence/absence of certain patterns (features)

– Far more powerful than a simple regression

– Robust to small changes in the input, so long as general patterns 
are present (ie: different species of cats are still cats)

[10]



  

Time for a quick demo!



  

Advanced ANNs
● Recurrent ANNs allow for time-dependent data

– Output of previous timestep becomes an input

– Good for chat bots

[10]



  

Advanced ANNs
● Convolutional neural networks are good for image 

classification

[10]; image credit: [13]
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