
Lean Seminar Series
Getting Started: Proving with the Lean
Interactive Theorem Prover

Session 2 UTSC
December 1, 2021

Symphony in F Major
Op. 33 No. 3 II. Allegretto

By Paul Wranitzky

Welcome to the Seminar Series, Session 2!
While you are getting settled, please enjoy

Our Research Team : Theorem Proving for Math Education

Kitty Yan
Mathematics

Education
Postdoc Fellow

OISE/UT

Logan Murphy
Computer Science
Master’s Student

CS/UT

Japleen Kaur Anand
Mathematics

Education
Master’s Student

OISE/UT

Gila Hanna
Mathematics

Education
Professor
OISE/UT

Overview

• Revisit the “Malice and Alice” puzzle
• Review tactics and theorems
• A Lean proof using the four tactics
• The Natural Number Game - Addition and

Multiplication Worlds

Revisit “Malice and Alice”

1. A man and a woman were together in a bar at the time of the murder.
2. The victim and the killer were together on a beach at the time of the

murder.
3. One of Alice’s two children was alone at the time of the murder.
4. Alice and her husband were not together at the time of the murder.
5. The victim’s twin was not the killer.
6. The killer was younger than the victim.

❏ Man and woman in the bar
❏ Killer and victim on the beach
❏ Child alone

Revisit “Malice and Alice”

❏ Man and woman in the bar
❏ Reasoning by cases (systematic search)

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S)

❏ Man and woman in the bar
❏ Reasoning by cases (systematic search)

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S)

→ (A-B) V (A-S) V (D-B) V (D-H)

Revisit “Malice and Alice”

Contradiction by (4) Contradiction by (3)

1. (A-B)
2. (A-S)
3. (D-B)
4. (D-H)

→ (H-D) V (H-S) 1.1) (H-D)
1.2) (H-S)

cases

❏ Man and woman in the bar
❏ Reasoning by cases (systematic search)

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S)

→ (A-B) V (A-S) V (D-B) V (D-H)

Revisit “Malice and Alice”

Contradiction by (4) Contradiction by (3)

1. (A-B)
2. (A-S)
3. (D-B)
4. (D-H)

→ (H-D) V (H-S)
cases

1.1) (H-D)
1.2) (H-S)

(6)&(5)

❏ Implication: 𝑃 implies (if 𝑃 then 𝑄): 𝑃→ 𝑄
❏ If and only if: 𝑃 ↔ 𝑄
❏ Conjunction (and): 𝑃 ∧ 𝑄
❏ Disjunction (or): 𝑃 ∨𝑄

Propositional Logic

❏ “If I have two heads, then circles are squares.”
❏ “If I had two heads, then circles would be squares.”

Review: The five Peano Axioms of Number Theory

1. Zero is a natural number.
2. Every natural number has a successor in the natural

numbers.
3. Zero is not the successor of any natural number.
4. The successors of two natural numbers are same iff the two

original numbers are the same.*
5. If a set contains zero and the successor of every number is

in the set, then the set contains the natural numbers.**

Peano’s Axioms in

❏ import mynat.definition
❏ imports Peano's definition of the natural numbers

{0,1,2,3,4,...}
❏ It gives us:
❏ a term 0 : mynat, interpreted as the number zero.
❏ a function succ : mynat → mynat, with succ n interpreted

as "the number after n”.
❏ The principle of mathematical induction.

Review Tactic : Reflexivity

Abbreviation: refl

Used to close a goal of the form “P = Q”,
where P and Q can be “reduced” to the same value

Tactic : Rewrite

Abbreviation: rw

Given a hypothesis of the form
“A = B”, replaces occurrences
of A with B, or vice versa.

Tactic: Induction

If n : mynat is in our assumptions,
then induction n with d hd attempts to prove the goal
by induction on n, with the inductive assumption in the succ
case being hd.

Proofs of Theorems: Addition

❏ add_zero (a : mynat) : a + 0 = a

Use with rw add_zero.
It simplifies a + 0 to a.

❏ zero_add (a : mynat) : 0 + a = a

Use with rw zero_add.
It simplifies 0 + a to a.

Proofs of Theorems: Addition

❏ add_succ (a b : mynat) : a + succ (b) = succ (a + b)

Use with rw add_succ.

❏ succ_add (a b : mynat) : succ (a) + b = succ (a + b)

Use with rw succ_add.

Proof of the Theorem: Addition is Commutative

Addition of natural numbers is commutative.

❏ add_comm (a b : mynat) : a + b = b + a

rw add_comm, will just find the first ? + ? it sees and swap it
around. Target more specific additions like this: rw
add_comm a will swap around additions of the form a + ?,
and rw add_comm a b, will only swap additions of the form
a + b.

❏ add_right_comm (a b c : mynat) : a + b + c = a + c + b

Proofs of the Theorem: Addition is Associative

❏ Addition of natural numbers is associative.
add_assoc (a b c : mynat) : (a + b) + c = a + (b + c)
rw add_assoc will change (a + b) + c to a + (b + c), but to
change it back you will need rw ← add_assoc.

❏ a + b + c = (a + b) + c
❏ Note: Get the left arrow by typing \l then the space bar in

Lean.

Proofs of Theorems: Multiplication

❏ import mynat.mul
imports the definition of multiplication on mynat

❏ mul_zero (a : mynat) : a * 0 = 0
❏ zero_mul (m : mynat) : 0 * m = 0
❏ mul_succ (a b : mynat) : a * succ (b) = a * b + a
❏ mul_one, one_mul, succ_mul?
❏ Addition is distributive over multiplication.

add_mul (a b t : mynat) : (a + b) * t = a * t + b * t

The Natural Number Game

• Addition World
• Multiplication World

• refl
• rw
• induction n with d hd
• simp

The Seminar Series

Session 3 will be in January, 2022.
See you all then!

