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Welcome to the            Seminar Series, Session 2! 
While you are getting settled, please enjoy 
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Overview

• Revisit the “Malice and Alice” puzzle 
• Review tactics and theorems 
• A Lean proof using the four tactics 
• The Natural Number Game - Addition and 

Multiplication Worlds 



Revisit “Malice and Alice”

1. A man and a woman were together in a bar at the time of the murder.
2. The victim and the killer were together on a beach at the time of the 

murder.
3. One of Alice’s two children was alone at the time of the murder.
4. Alice and her husband were not together at the time of the murder.
5. The victim’s twin was not the killer.
6. The killer was younger than the victim.

❏ Man and woman in the bar
❏ Killer and victim on the beach
❏ Child alone 



Revisit “Malice and Alice”

❏ Man and woman in the bar
❏ Reasoning by cases (systematic search)

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S)



❏ Man and woman in the bar
❏ Reasoning by cases (systematic search) 

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S)

→ (A-B) V (A-S) V (D-B) V (D-H) 

Revisit “Malice and Alice”

Contradiction by (4) Contradiction by (3)

1. (A-B)
2. (A-S)
3. (D-B)
4. (D-H) 

→ (H-D) V (H-S) 1.1) (H-D) 
1.2) (H-S)

cases 
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Revisit “Malice and Alice”

Contradiction by (4) Contradiction by (3)

1. (A-B)
2. (A-S)
3. (D-B)
4. (D-H) 

→ (H-D) V (H-S) 
cases 

1.1) (H-D) 
1.2) (H-S)

(6)&(5)



❏ Implication: 𝑃 implies  (if 𝑃 then 𝑄): 𝑃→ 𝑄
❏ If and only if: 𝑃 ↔ 𝑄
❏ Conjunction (and): 𝑃 ∧ 𝑄
❏ Disjunction (or): 𝑃 ∨𝑄

Propositional Logic

❏ “If I have two heads, then circles are squares.”
❏ “If I had two heads, then circles would be squares.”



Review: The five Peano Axioms of Number Theory

1. Zero is a natural number.
2. Every natural number has a successor in the natural 

numbers.
3. Zero is not the successor of any natural number.
4. The successors of two natural numbers are same iff the two 

original numbers are the same.*
5. If a set contains zero and the successor of every number is 

in the set, then the set contains the natural numbers.**



Peano’s Axioms in 

❏ import mynat.definition
❏ imports Peano's definition of the natural numbers 

{0,1,2,3,4,...}
❏ It gives us:
❏ a term 0 : mynat, interpreted as the number zero.
❏ a function succ : mynat → mynat, with succ n interpreted 

as "the number after n”.
❏ The principle of mathematical induction.



Review Tactic : Reflexivity

Abbreviation: refl

Used to close a goal of the form “P = Q”, 
where P and Q can be “reduced” to the same value



Tactic : Rewrite

Abbreviation: rw

Given a hypothesis of the form 
“A = B”, replaces occurrences 
of A with B, or vice versa.



Tactic: Induction 

If n : mynat is in our assumptions, 
then induction n with d hd attempts to prove the goal 
by induction on n, with the inductive assumption in the succ
case being hd.



Proofs of Theorems: Addition

❏ add_zero (a : mynat) : a + 0 = a

Use with rw add_zero.
It simplifies a + 0 to a.

❏ zero_add (a : mynat) : 0 + a = a

Use with rw zero_add.
It simplifies 0 + a to a.



Proofs of Theorems: Addition

❏ add_succ (a b : mynat) : a + succ (b) = succ (a + b)

Use with rw add_succ.

❏ succ_add (a b : mynat) : succ (a) + b = succ (a + b)

Use with rw succ_add.



Proof of the Theorem: Addition is Commutative

Addition of natural numbers is commutative.

❏ add_comm (a b : mynat) : a + b = b + a 

rw add_comm, will just find the first ? + ? it sees and swap it 
around. Target more specific additions like this: rw
add_comm a will swap around additions of the form a + ?, 
and rw add_comm a b, will only swap additions of the form 
a + b.

❏ add_right_comm (a b c : mynat) : a + b + c = a + c + b



Proofs of the Theorem: Addition is Associative

❏ Addition of natural numbers is associative.
add_assoc (a b c : mynat) : (a + b) + c = a + (b + c)
rw add_assoc will change (a + b) + c to a + (b + c), but to 
change it back you will need rw ← add_assoc.

❏ a + b + c = (a + b) + c 
❏ Note: Get the left arrow by typing \l then the space bar in 

Lean.



Proofs of Theorems: Multiplication

❏ import mynat.mul
imports the definition of multiplication on mynat

❏ mul_zero (a : mynat) : a * 0 = 0
❏ zero_mul (m : mynat) : 0 * m = 0
❏ mul_succ (a b : mynat) : a * succ (b) = a * b + a
❏ mul_one, one_mul, succ_mul?
❏ Addition is distributive over multiplication.

add_mul (a b t : mynat) : (a + b) * t = a * t + b * t



The Natural Number Game

• Addition World
• Multiplication World

• refl
• rw
• induction n with d hd 
• simp



The          Seminar Series 

Session 3 will be in January, 2022.
See you all then!


