# Introduction to modular forms and elliptic curves 

Kenny Li<br>University of Toronto<br>5th July 2023

## Table of Contents

(1) What is elliptic curve?

- Idea of the formal definition
(2) Why elliptic curve is elliptic?
- From complex torus to elliptic function
(3) What is modular form?
- Function of lattice
- Function of moduli space

4 Finally, something about number theory

- Congruent number
- L functions
- Elliptic curve is modular?


## Definition of Curve

## Definition

- In differential geometry, a curve is image of continuously differentiable function $\gamma:[a, b] \rightarrow X$ where $X$ is manifold
- In algebraic geometry, a curve is a zero set of a polynomial of two variables $f(x, y)$
- Example: the unit circle $x^{2}+y^{2}=1$ can be viewed as $f(x, y)=x^{2}+y^{2}-1=0$



## Definition of Curve

## Definition

- In differential geometry, a curve is image of continuously differentiable function $\gamma:[a, b] \rightarrow X$ where $X$ is manifold
- In algebraic geometry, a curve is a zero set of a polynomial of two variables $f(x, y)$
- Example: the unit circle $x^{2}+y^{2}=1$ can be viewed as $f(x, y)=x^{2}+y^{2}-1=0$

- Remark: Algebraic curve and analytic curve are both rigid while topological curve and differentiable curve are floppy.


## Elliptic curve

## Definition

Elliptic curve is a smooth projective algebraic curve of genus one with a distinguished point O

In most of the field (e.g. $\mathbb{R}$ or $\mathbb{C}$ ), the elliptic curves are described by the equation

$$
y^{2}=x^{3}+a x+b
$$



However, these graph just shows part of the elliptic curve

## Projective space

- The idea of projective space is to describe the geometry in graphical perspective. To define a projective plane (2D space), we need a 3D space.


Single point perspective projection.

The vanishing point is called point at infinity.

## Projective space

- The idea of projective space is to describe the geometry in graphical perspective. To define a projective plane (2D space), we need a 3D space.


Single point perspective projection.

The vanishing point is called point at infinity.

- Mathematically, it is done by taking $p_{1} \sim p_{2}$ if $\exists \lambda \in F, p_{2}=\lambda p_{1}$ that is to consider $p_{1}=\left(x_{1}, y_{1}\right)$ and $\lambda p_{1}=\left(\lambda x_{1}, \lambda y_{1}\right)$ are the very same point


## Projective curve

- To define a curve on projective plane, we want to check that $p_{1}$ lies on curve if and only if $\lambda p_{1}$ lies on the same curve.


## Projective curve

- To define a curve on projective plane, we want to check that $p_{1}$ lies on curve if and only if $\lambda p_{1}$ lies on the same curve.
- Unfortunately, this is NOT the case of $y^{2}=x^{3}+a x+b$.


## Projective curve

- To define a curve on projective plane, we want to check that $p_{1}$ lies on curve if and only if $\lambda p_{1}$ lies on the same curve.
- Unfortunately, this is NOT the case of $y^{2}=x^{3}+a x+b$.
- That is

$$
y_{1}^{2}-x_{1}^{3}-a x_{1}-b=0
$$

does not implies

$$
\lambda^{2} y_{1}^{2}-\lambda^{3} x_{1}^{3}-\lambda a x_{1}-b=0
$$

## Projective curve

- To define a curve on projective plane, we want to check that $p_{1}$ lies on curve if and only if $\lambda p_{1}$ lies on the same curve.
- Unfortunately, this is NOT the case of $y^{2}=x^{3}+a x+b$.
- That is

$$
y_{1}^{2}-x_{1}^{3}-a x_{1}-b=0
$$

does not implies

$$
\lambda^{2} y_{1}^{2}-\lambda^{3} x_{1}^{3}-\lambda a x_{1}-b=0
$$

- To fix it, we have to consider the homogeneous polynomial. For $y^{2} z=x^{3}+a x z^{2}+b z^{3}$, the point $P=(x, y, 1)$ correspond to the points $p=\left(\frac{x}{z}, \frac{y}{z}\right)=(x, y)$
Then the point at infinity is just $O=(0,1,0)$


## Recall

## Definition

Elliptic curve is a smooth projective algebraic curve of genus one with a distinguished point O

## Smooth curve

- In geometry, smooth means non-singular at everywhere, which means no cusps and no self-intersections .


## Smooth curve

- In geometry, smooth means non-singular at everywhere, which means no cusps and no self-intersections .
- For algebraic curve described by $f(x, y)=0$ is non-singular if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not both zero at that point. Example: the curve $y^{2}=x^{3}$ has cusp at 0



## Smooth curve

－In geometry，smooth means non－singular at everywhere，which means no cusps and no self－intersections ．
－For algebraic curve described by $f(x, y)=0$ is non－singular if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not both zero at that point． Example：the curve $y^{2}=x^{3}$ has cusp at 0

－For elliptic curve $y^{2}=x^{3}+a x+b$ ，it is the equivalent to

$$
\Delta=-16\left(4 a^{3}+27 b^{2}\right) \neq 0
$$

## Torus

What do we mean by genus one? Intuitively, genus is the number of holes. Example: a torus has genus one.


In fact, an elliptic curve over complex number is a torus. But then how does elliptic curve be related to ellipse?

## Complex torus

## Definition

A complex torus is the set $\mathbb{C} / L$ where $L=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}$ is a lattice generated by $\omega_{1}, \omega_{2} \in \mathbb{C}$

- Intuitively, a complex torus is formed by gluing opposite sides of the lattice.



## Complex torus

## Definition

A complex torus is the set $\mathbb{C} / L$ where $L=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}$ is a lattice generated by $\omega_{1}, \omega_{2} \in \mathbb{C}$

- Intuitively, a complex torus is formed by gluing opposite sides of the lattice.

- The idea of taking quotient is similar to $\mathbb{Z} / p \mathbb{Z}=\{0,1, \ldots, p-1\}$


## Complex torus

## Definition

A complex torus is the set $\mathbb{C} / L$ where $L=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}$ is a lattice generated by $\omega_{1}, \omega_{2} \in \mathbb{C}$

- Intuitively, a complex torus is formed by gluing opposite sides of the lattice.

- The idea of taking quotient is similar to $\mathbb{Z} / p \mathbb{Z}=\{0,1, \ldots, p-1\}$
- Remark: $\mathbb{C} / L$ can be interpreted as quotient of the group action and a compact Riemann surface (manifold).


## Elliptic function

## Definition

An elliptic function is a complex differentiable (except some points) such that $\forall \ell \in L, f(z+\ell)=f(z)$

- This means the behaviour of the elliptic function repeats in every parallelogram.
Hence, it can be viewed as a function on complex torus.


## Elliptic function

## Definition

An elliptic function is a complex differentiable (except some points) such that $\forall \ell \in L, f(z+\ell)=f(z)$

- This means the behaviour of the elliptic function repeats in every parallelogram.
Hence, it can be viewed as a function on complex torus.
- It is the inverse of some elliptic integral which is generalization of that gives the arc-length of ellipse $\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2}(\theta)+b^{2} \cos ^{2}(\theta)} d \theta$.


## Examples

Weierstrass elliptic function is defined as
$\wp(z)=\frac{1}{z^{2}}+\sum_{\lambda \in L-\{0\}}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)$
It is the inverse of $u(z)=\int_{z}^{\infty} \frac{-1}{\sqrt{4 s^{3}-g_{2} s-g_{3}}} d s$ such that $u(\wp(z))=z$

## Elliptic curve and torus

- Weierstrass elliptic function satisfied a differential equation

$$
\left(\wp^{\prime}(z)\right)^{2}=4 \wp^{3}(z)-g_{2 \wp}(z)-g_{3}
$$

## Elliptic curve and torus

- Weierstrass elliptic function satisfied a differential equation

$$
\left(\wp^{\prime}(z)\right)^{2}=4 \wp^{3}(z)-g_{2} \wp(z)-g_{3}
$$

- It defines an elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$ by letting $(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)$


## Elliptic curve and torus

- Weierstrass elliptic function satisfied a differential equation

$$
\left(\wp^{\prime}(z)\right)^{2}=4 \wp^{3}(z)-g_{2} \wp(z)-g_{3}
$$

- It defines an elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$ by letting $(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)$
- More importantly, this map is isomorphic.

This implies an elliptic curve forms a group isomorphic to complex torus.


The point at infinity $O$ is the group identity.
(It is also isomorphic in terms of Riemann surfaces)

## Function of lattice

- But what is $g_{2}$ and $g_{3}$ ? It should be something only depends on the lattice but not depends on $z$.


## Function of lattice

- But what is $g_{2}$ and $g_{3}$ ? It should be something only depends on the lattice but not depends on $z$.
- In fact, the construction suggests that $g_{2}\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{-4} g_{2}\left(\omega_{1}, \omega_{2}\right)$ and $g_{3}\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{-6} g_{3}\left(\omega_{1}, \omega_{2}\right)$


## Function of lattice

- But what is $g_{2}$ and $g_{3}$ ? It should be something only depends on the lattice but not depends on $z$.
- In fact, the construction suggests that $g_{2}\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{-4} g_{2}\left(\omega_{1}, \omega_{2}\right)$ and $g_{3}\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{-6} g_{3}\left(\omega_{1}, \omega_{2}\right)$
- These functions are the modular forms if we define $\tau=\frac{\omega_{2}}{\omega_{1}}$ and $g_{2}(\tau)=g_{2}(1, \tau)$.


## Examples

The Eisenstein series is a modular form defined by
$G_{2 k}(z)=\sum_{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{1}{(m+n z)^{2 k}}$
Then $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$

## Function of lattice

- But what is $g_{2}$ and $g_{3}$ ? It should be something only depends on the lattice but not depends on $z$.
- In fact, the construction suggests that $g_{2}\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{-4} g_{2}\left(\omega_{1}, \omega_{2}\right)$ and $g_{3}\left(\lambda \omega_{1}, \lambda \omega_{2}\right)=\lambda^{-6} g_{3}\left(\omega_{1}, \omega_{2}\right)$
- These functions are the modular forms if we define $\tau=\frac{\omega_{2}}{\omega_{1}}$ and $g_{2}(\tau)=g_{2}(1, \tau)$.


## Examples

The Eisenstein series is a modular form defined by
$G_{2 k}(z)=\sum_{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{1}{(m+n z)^{2 k}}$
Then $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$

- The theorem about the modular forms implies that

$$
\Delta(z)=\left(g_{2}(z)\right)^{3}-27\left(g_{3}(z)\right)^{2} \neq 0 \text { except } z=i \infty
$$

## Classification of elliptic curve

- One may ask when do two elliptic curves $\mathbb{C} / L$ are considered as the same.


## Classification of elliptic curve

- One may ask when do two elliptic curves $\mathbb{C} / L$ are considered as the same.
- Intuitively, the lattice $L$ remains the same if you rotates or translate the whole plane or scratch both generators at the same amount.


## Classification of elliptic curve

- One may ask when do two elliptic curves $\mathbb{C} / L$ are considered as the same.
- Intuitively, the lattice $L$ remains the same if you rotates or translate the whole plane or scratch both generators at the same amount.
- Mathematically, it is done by the set of $2 \times 2$ matrices with integers entries and determinant 1.
This means $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{\tau}{1}=\binom{a \tau+b}{c \tau+d}=\binom{\tau^{\prime}}{1}$ should implies $\tau$ and $\tau^{\prime}$ defines the same lattice $L$.


## Moduli space

- In geometry, moduli space is the space such that the points classify certain geometric object.
Example: circles can be classified by the radius, so the moduli space is the positive real line.


## Moduli space

- In geometry, moduli space is the space such that the points classify certain geometric object.
Example: circles can be classified by the radius, so the moduli space is the positive real line.
- Then the moduli space of elliptic curve should consists points which cannot be related to other points by those special matrix.



## Moduli space

- In geometry, moduli space is the space such that the points classify certain geometric object.
Example: circles can be classified by the radius, so the moduli space is the positive real line.
- Then the moduli space of elliptic curve should consists points which cannot be related to other points by those special matrix.

- This means for any point $z$ outside the grey region, there exists a matrix that can brought $z$ inside the grey region.


## Moduli space

- In geometry, moduli space is the space such that the points classify certain geometric object.
Example: circles can be classified by the radius, so the moduli space is the positive real line.
- Then the moduli space of elliptic curve should consists points which cannot be related to other points by those special matrix.

- This means for any point $z$ outside the grey region, there exists a matrix that can brought $z$ inside the grey region.
- It is the fundamental domain of the group action of on the
upper-half plane by $\gamma(z)=\frac{a z+b}{c z+d}$ where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.


## Modular form

## Interpretations of modular form

- Modular forms f of weight 2 k are the differential forms on the moduli space such that satisfying $f(\gamma(z)) d(\gamma(z))^{k}=f(z) d z^{k}$
- Modular forms $f$ of weight $2 k$ are the differentiable functions depend on the lattice such that $f(\tau)=g(1, \tau)=\omega_{1}^{2 k} g\left(\omega_{1}, \omega_{2}\right)$


## Examples

- The $\mathbf{j}$-invariant function defined by $j(z)=\frac{1728 g_{2}(z)^{3}}{g_{2}(z)^{3}-27 g_{3}(z)^{2}}$ satisfied $j\left(\frac{a z+b}{c z+d}\right)=j(z)$
- The Eisenstein series $G_{2 k}(z)=\sum_{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{1}{(m+n z)^{2 k}}$ satisfied $G_{2 k}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} G_{2 k}(z)$


## Modular form

## Definition

Modular form of weight 2 k is complex differentiable function such that $f(\gamma(z))=(c z+d)^{2 k} f(z)$ and bounded when $\operatorname{Im}(z) \rightarrow \infty$

- The condition of being bounded is to ensure that modular form can also be expressed in terms of $q=e^{2 \pi i z}$.


## Modular form

## Definition

Modular form of weight 2 k is complex differentiable function such that $f(\gamma(z))=(c z+d)^{2 k} f(z)$ and bounded when $\operatorname{Im}(z) \rightarrow \infty$

- The condition of being bounded is to ensure that modular form can also be expressed in terms of $q=e^{2 \pi i z}$.
- The coefficients are surprisingly informative.


## Examples

- $j(z)=q^{-1}+744+196884 q+21493760 q^{3}+\ldots$ is related to the dimension of representation of monster group which has about $8 \times 10^{53}$ elements
- $\frac{G_{4}(z)}{2 \zeta(2 k)}=1+240 q^{2}+2160 q^{4}+6720 q^{6}+\ldots=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}$ is related to the optimal sphere packing in 8 dimensional space


## Applications in number theory

## Congruent number

- Congruent number is a positive integer such that it is the area of a triangle with rational number sides. Example: 6 is a congruent number



## Congruent number

- Congruent number is a positive integer such that it is the area of a triangle with rational number sides. Example: 6 is a congruent number



## Question

Given a positive integer, can you determine whether it is congruent?

## Congruent number

- Congruent number is a positive integer such that it is the area of a triangle with rational number sides.
Example: 6 is a congruent number



## Question

Given a positive integer, can you determine whether it is congruent?

- It was considered by ancient Greeks and Arabs.


## Congruent number

- Congruent number is a positive integer such that it is the area of a triangle with rational number sides.
Example: 6 is a congruent number



## Question

Given a positive integer, can you determine whether it is congruent?

- It was considered by ancient Greeks and Arabs.
- But is STILL UNSOLVED NOW !


## Elliptic curve and congruent number

- n is congruent number if and only if elliptic curve $y^{2}=x^{3}-n^{2} x$ has infinitely many rational number points.


## Elliptic curve and congruent number

- n is congruent number if and only if elliptic curve $y^{2}=x^{3}-n^{2} x$ has infinitely many rational number points.
- It is closely related to a US\$1,000,000 problem.


## Conjecture (Birch and Swinnerton-Dyer)

For $r$ is rank of the group of elliptic curve over rational number $E(\mathbb{Q})$ such that it is isomorphic to $E(\mathbb{Q})_{\text {tors }} \bigoplus \mathbb{Z}^{r}$, it is conjectured that the $\mathbf{L}$ function satisfies

$$
L(E, s)=(s-1)^{r} g(s)
$$

where $g(s)$ is complex differentiable and nonzero at $s=1$.

## Elliptic curve and congruent number

- n is congruent number if and only if elliptic curve $y^{2}=x^{3}-n^{2} x$ has infinitely many rational number points.
- It is closely related to a US\$1,000,000 problem.


## Conjecture (Birch and Swinnerton-Dyer)

For $r$ is rank of the group of elliptic curve over rational number $E(\mathbb{Q})$ such that it is isomorphic to $E(\mathbb{Q})_{\text {tors }} \bigoplus \mathbb{Z}^{r}$, it is conjectured that the $\mathbf{L}$ function satisfies

$$
L(E, s)=(s-1)^{r} g(s)
$$

where $g(s)$ is complex differentiable and nonzero at $s=1$.

- If this holds true for elliptic curve $y^{2}=x^{3}-n^{2} x$ then there is an algorithm that can check whether $n$ is congruent or not.


## Elliptic curve and congruent number

- n is congruent number if and only if elliptic curve $y^{2}=x^{3}-n^{2} x$ has infinitely many rational number points.
- It is closely related to a US\$1,000,000 problem.


## Conjecture (Birch and Swinnerton-Dyer)

For $r$ is rank of the group of elliptic curve over rational number $E(\mathbb{Q})$ such that it is isomorphic to $E(\mathbb{Q})_{\text {tors }} \bigoplus \mathbb{Z}^{r}$, it is conjectured that the $\mathbf{L}$ function satisfies

$$
L(E, s)=(s-1)^{r} g(s)
$$

where $g(s)$ is complex differentiable and nonzero at $s=1$.

- If this holds true for elliptic curve $y^{2}=x^{3}-n^{2} x$ then there is an algorithm that can check whether $n$ is congruent or not.
- But what is L function?


## L functions in number theory

- Prototype: Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ The fact that $\zeta(1+i t) \neq 0$ was used to prove that $\#\{$ prime $\leq x\} \sim \frac{\log (x)}{x}$


## L functions in number theory

- Prototype: Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ The fact that $\zeta(1+i t) \neq 0$ was used to prove that $\#\{$ prime $\leq x\} \sim \frac{\log (x)}{x}$
- First $L$ function: Dirichlet $\mathbf{L}$ function $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$ The fact that $L(1, \chi) \neq 0$ was used to prove that there are infinitely many prime of the form $a+n d$ for $\operatorname{gcd}(a, d)=1$


## L functions in number theory

- Prototype: Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ The fact that $\zeta(1+i t) \neq 0$ was used to prove that $\#\{$ prime $\leq x\} \sim \frac{\log (x)}{x}$
- First L function: Dirichlet L function $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$ The fact that $L(1, \chi) \neq 0$ was used to prove that there are infinitely many prime of the form $a+n d$ for $\operatorname{gcd}(a, d)=1$
- The idea of $L$ functions is to make $a(n)$ to series $\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$


## L functions in number theory

- Prototype: Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ The fact that $\zeta(1+i t) \neq 0$ was used to prove that $\#\{$ prime $\leq x\} \sim \frac{\log (x)}{x}$
- First L function: Dirichlet $\mathbf{L}$ function $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$ The fact that $L(1, \chi) \neq 0$ was used to prove that there are infinitely many prime of the form $a+n d$ for $\operatorname{gcd}(a, d)=1$
- The idea of $L$ functions is to make $a(n)$ to series $\sum_{n=1}^{\infty} \frac{a(n)}{n^{5}}$
- In fact, the coefficients of some spacial kind of modular form is associated to $L$ function.


## Example

For $\Delta(z)=\left(g_{2}(z)\right)^{3}-27\left(g_{3}(z)\right)^{2}=\sum_{n=1}^{\infty} \tau(n) q^{n}$,
the series $\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{5}}$ is a $L$ function called Ramanujan $L$ function

## L function of elliptic curve

- The definition of $L$ function of elliptic curves is complicated.


## L function of elliptic curve

- The definition of $L$ function of elliptic curves is complicated.
- For $E_{n}: y^{2}=x^{3}-n^{2} x$,

$$
L\left(E_{n}, s\right)=\frac{\zeta(s) \zeta(s-1)}{\prod_{p} Z\left(E_{n} \backslash \mathbb{F}_{p}, p^{-s}\right)}=\prod_{p \nmid 2 n} \frac{1}{1-2 a_{E, p} p^{-s}+p^{1-2 s}}
$$

where $Z\left(E_{n} \backslash \mathbb{F}_{p}, T\right)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}}{r}(T)^{r}\right)$ and $N_{r}$ is number of points over $\mathbb{F}_{p^{r}}$ on the elliptic curve.

## L function of elliptic curve

- The definition of $L$ function of elliptic curves is complicated.
- For $E_{n}: y^{2}=x^{3}-n^{2} x$,

$$
L\left(E_{n}, s\right)=\frac{\zeta(s) \zeta(s-1)}{\prod_{p} Z\left(E_{n} \backslash \mathbb{F}_{p}, p^{-s}\right)}=\prod_{p \nmid 2 n} \frac{1}{1-2 a_{E, p} p^{-s}+p^{1-2 s}}
$$

where $Z\left(E_{n} \backslash \mathbb{F}_{p}, T\right)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}}{r}(T)^{r}\right)$ and $N_{r}$ is number of points over $\mathbb{F}_{p^{r}}$ on the elliptic curve.

- What if we write it in the form $L(E, s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ ?


## L function of elliptic curve

- The definition of $L$ function of elliptic curves is complicated.
- For $E_{n}: y^{2}=x^{3}-n^{2} x$,

$$
L\left(E_{n}, s\right)=\frac{\zeta(s) \zeta(s-1)}{\prod_{p} Z\left(E_{n} \backslash \mathbb{F}_{p}, p^{-s}\right)}=\prod_{p \nmid 2 n} \frac{1}{1-2 a_{E, p} p^{-s}+p^{1-2 s}}
$$

where $Z\left(E_{n} \backslash \mathbb{F}_{p}, T\right)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}}{r}(T)^{r}\right)$ and $N_{r}$ is number of points over $\mathbb{F}_{p^{r}}$ on the elliptic curve.

- What if we write it in the form $L(E, s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ ?
- Turns out

$$
f(E, q)=\sum_{n=1}^{\infty} a(n) q^{n}
$$

is a modular form !

## Modular elliptic curve

## Modularity theorem

Elliptic curve E over rational number can be obtained by rational map from the modular curve $X_{0}(N)$.

The idea of modular curve is to classify elliptic curves with extra condition.

The modular curve $X_{0}(N)$ is the compactified quotient of upper-half plane by the set of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfying $c \equiv 0(\bmod N)$.
The associated information about elliptic curve is its cyclic subgroup of order N .

## Significance of modularity theorem

## Fermat's last theorem

$x^{n}+y^{n}=z^{n}$ has no positive integer solution for $n \geq 3$

- It was conjectured by Fermat in 1637.
- The case $n=3$ was proved by Euler in 1770 .
- Some special cases was proved by using algebraic number theory in 19th and early 20th century.
- Suppose $a^{p}+b^{p}=c^{p}$ for positive integer $a, b, c$ and prime $p>3$, Frey related it to elliptic curve $y^{2}=x\left(x-a^{p}\right)\left(x-b^{p}\right)$ in 1986.
- Ribet showed that the elliptic curve created by $a, b, c$ is semistable and not modular in 1990.
- Wiles proved the modularity theorem for the semistable elliptic curve in 1995.
By contradiction, it proved Fermat's last theorem.


## Summary

(1) Complex elliptic curve is a torus.
(2) Its name comes from the relationship with elliptic function.
(3) Modular form is function of lattice and form of space classifying elliptic curve.
(9) Coefficients of modular form are informative.
(5) Elliptic curve itself is related to congruent problem.
(6) The connection of elliptic curve and modular form leads to the proof of Fermat's last theorem.

