Introduction to modular forms and elliptic curves

Kenny Li

University of Toronto

5th July 2023

1/25

Kenny Li (UofT)

Table of Contents

What is elliptic curve?

• Idea of the formal definition

2 Why elliptic curve is elliptic?

• From complex torus to elliptic function

What is modular form?

- Function of lattice
- Function of moduli space

Finally, something about number theory

- Congruent number
- L functions
- Elliptic curve is modular?

Definition of Curve

Definition

- In differential geometry, a curve is image of continuously differentiable function $\gamma : [a, b] \rightarrow X$ where X is manifold
- In algebraic geometry, a curve is a zero set of a polynomial of two variables f(x,y)
- Example: the unit circle $x^2 + y^2 = 1$ can be viewed as $f(x, y) = x^2 + y^2 1 = 0$

Definition of Curve

Definition

- In differential geometry, a curve is image of continuously differentiable function $\gamma : [a, b] \rightarrow X$ where X is manifold
- In algebraic geometry, a curve is a zero set of a polynomial of two variables f(x,y)
- Example: the unit circle $x^2 + y^2 = 1$ can be viewed as $f(x, y) = x^2 + y^2 1 = 0$

 Remark: Algebraic curve and analytic curve are both rigid while topological curve and differentiable curve are floppy.

Elliptic curve is a **smooth projective algebraic curve of genus one** with a distinguished point O

In most of the field (e.g. $\mathbb R$ or $\mathbb C),$ the elliptic curves are described by the equation

$$y^2 = x^3 + ax + b$$

However, these graph just shows part of the elliptic curve

4 / 25

Kenny Li (UofT)

Projective space

• The idea of projective space is to describe the geometry in graphical perspective. To define a projective plane (2D space), we need a 3D space.

Single point perspective projection.

The vanishing point is called **point at infinity**.

Projective space

• The idea of projective space is to describe the geometry in graphical perspective. To define a projective plane (2D space), we need a 3D space.

Single point perspective projection.

The vanishing point is called **point at infinity**.

• Mathematically, it is done by taking $p_1 \sim p_2$ if $\exists \lambda \in F, p_2 = \lambda p_1$ that is to consider $p_1 = (x_1, y_1)$ and $\lambda p_1 = (\lambda x_1, \lambda y_1)$ are the very same point To define a curve on projective plane, we want to check that p₁ lies on curve if and only if λp₁ lies on the same curve.

- To define a curve on projective plane, we want to check that p₁ lies on curve if and only if λp₁ lies on the same curve.
- Unfortunately, this is **NOT** the case of $y^2 = x^3 + ax + b$.

Projective curve

- To define a curve on projective plane, we want to check that p₁ lies on curve if and only if λp₁ lies on the same curve.
- Unfortunately, this is **NOT** the case of $y^2 = x^3 + ax + b$.

That is

$$y_1^2 - x_1^3 - ax_1 - b = 0$$

does not implies

$$\lambda^2 y_1^2 - \lambda^3 x_1^3 - \lambda a x_1 - b = 0$$

- To define a curve on projective plane, we want to check that p₁ lies on curve if and only if λp₁ lies on the same curve.
- Unfortunately, this is **NOT** the case of $y^2 = x^3 + ax + b$.
- That is

$$y_1^2 - x_1^3 - ax_1 - b = 0$$

does not implies

$$\lambda^2 y_1^2 - \lambda^3 x_1^3 - \lambda a x_1 - b = 0$$

 To fix it, we have to consider the homogeneous polynomial. For y²z = x³ + axz² + bz³, the point P = (x, y, 1) correspond to the points p = (^x/_z, ^y/_z) = (x, y) Then the point at infinity is just O = (0, 1, 0)

Elliptic curve is a smooth projective algebraic curve of genus one with a distinguished point O

Smooth curve

• In geometry, smooth means non-singular at everywhere, which means no cusps and no self-intersections .

Smooth curve

- In geometry, smooth means non-singular at everywhere, which means no **cusps** and no **self-intersections** .
- For algebraic curve described by f(x, y) = 0 is non-singular if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are **not both zero** at that point. Example: the curve $y^2 = x^3$ has cusp at 0

3 🖌 🖌 3 🕨

Smooth curve

- In geometry, smooth means non-singular at everywhere, which means no **cusps** and no **self-intersections** .
- For algebraic curve described by f(x, y) = 0 is non-singular if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are **not both zero** at that point.

Example: the curve $y^2 = x^3$ has cusp at 0

• For elliptic curve $y^2 = x^3 + ax + b$, it is the equivalent to

$$\Delta = -16(4a^3 + 27b^2) \neq 0$$

8/25

What do we mean by **genus one**? Intuitively, genus is the number of holes. Example: **a torus has genus one**.

In fact, an elliptic curve over complex number is a torus. But then how does elliptic curve be related to ellipse?

9/25

A complex torus is the set \mathbb{C}/L where $L = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ is a lattice generated by $\omega_1, \omega_2 \in \mathbb{C}$

 Intuitively, a complex torus is formed by gluing opposite sides of the lattice.

A complex torus is the set \mathbb{C}/L where $L = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ is a lattice generated by $\omega_1, \omega_2 \in \mathbb{C}$

 Intuitively, a complex torus is formed by gluing opposite sides of the lattice.

• The idea of taking quotient is similar to $\mathbb{Z}/p\mathbb{Z}=\{0,1,...,p-1\}$

A complex torus is the set \mathbb{C}/L where $L = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ is a lattice generated by $\omega_1, \omega_2 \in \mathbb{C}$

 Intuitively, a complex torus is formed by gluing opposite sides of the lattice.

- The idea of taking quotient is similar to $\mathbb{Z}/p\mathbb{Z}=\{0,1,...,p-1\}$
- Remark : C/L can be interpreted as quotient of the group action and a compact Riemann surface (manifold).

Elliptic function

Definition

An **elliptic function** is a complex differentiable (except some points) such that $\forall \ell \in L$, $f(z + \ell) = f(z)$

• This means the behaviour of the elliptic function repeats in every parallelogram.

Hence, it can be viewed as a function on complex torus.

Elliptic function

Definition

An **elliptic function** is a complex differentiable (except some points) such that $\forall \ell \in L$, $f(z + \ell) = f(z)$

• This means the behaviour of the elliptic function repeats in every parallelogram.

Hence, it can be viewed as a function on complex torus.

• It is the inverse of some elliptic integral which is generalization of that gives the arc-length of ellipse $\int_0^{2\pi} \sqrt{a^2 \sin^2(\theta) + b^2 \cos^2(\theta)} d\theta$.

5th July 2023

11/25

Examples

Weierstrass elliptic function is defined as $\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in L - \{0\}} \left(\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2}\right)$ It is the inverse of $u(z) = \int_z^\infty \frac{-1}{\sqrt{4s^3 - g_2 s - g_3}} ds$

such that
$$u(\wp(z)) = z$$

Kenny Li (UofT)

Elliptic curve and torus

• Weierstrass elliptic function satisfied a differential equation $(\wp'(z))^2 = 4\wp^3(z) - g_2\wp(z) - g_3$

Elliptic curve and torus

- Weierstrass elliptic function satisfied a differential equation $(\wp'(z))^2 = 4\wp^3(z) g_2\wp(z) g_3$
- It defines an elliptic curve $y^2 = 4x^3 g_2x g_3$ by letting $(x, y) = (\wp(z), \wp'(z))$

Elliptic curve and torus

- Weierstrass elliptic function satisfied a differential equation $(\wp'(z))^2 = 4\wp^3(z) g_2\wp(z) g_3$
- It defines an elliptic curve $y^2 = 4x^3 g_2x g_3$ by letting $(x, y) = (\wp(z), \wp'(z))$
- More importantly, this map is isomorphic. This implies an elliptic curve forms a group isomorphic to complex torus.

The point at infinity O is the group identity. (It is also isomorphic in terms of Riemann surfaces)

12 / 25

• But what is g_2 and g_3 ? It should be something only depends on the lattice but not depends on z.

- But what is g₂ and g₃? It should be something only depends on the lattice but not depends on z.
- In fact, the construction suggests that $g_2(\lambda\omega_1,\lambda\omega_2) = \lambda^{-4}g_2(\omega_1,\omega_2)$ and $g_3(\lambda\omega_1,\lambda\omega_2) = \lambda^{-6}g_3(\omega_1,\omega_2)$

- But what is g₂ and g₃? It should be something only depends on the lattice but not depends on z.
- In fact, the construction suggests that $g_2(\lambda\omega_1,\lambda\omega_2) = \lambda^{-4}g_2(\omega_1,\omega_2)$ and $g_3(\lambda\omega_1,\lambda\omega_2) = \lambda^{-6}g_3(\omega_1,\omega_2)$

5th July 2023

13/25

• These functions are the **modular forms** if we define $\tau = \frac{\omega_2}{\omega_1}$ and $g_2(\tau) = g_2(1, \tau)$.

Examples

The **Eisenstein series** is a modular form defined by $G_{2k}(z) = \sum_{(m,n) \in \mathbb{Z}^2 - \{(0,0)\}} \frac{1}{(m+nz)^{2k}}$

Then $g_2 = 60G_4$ and $g_3 = 140G_6$

- But what is g₂ and g₃? It should be something only depends on the lattice but not depends on z.
- In fact, the construction suggests that $g_2(\lambda\omega_1,\lambda\omega_2) = \lambda^{-4}g_2(\omega_1,\omega_2)$ and $g_3(\lambda\omega_1,\lambda\omega_2) = \lambda^{-6}g_3(\omega_1,\omega_2)$
- These functions are the **modular forms** if we define $\tau = \frac{\omega_2}{\omega_1}$ and $g_2(\tau) = g_2(1, \tau)$.

Examples

The **Eisenstein series** is a modular form defined by $G_{2k}(z) = \sum_{(m,n) \in \mathbb{Z}^2 - \{(0,0)\}} \frac{1}{(m+nz)^{2k}}$

Then $g_2 = 60G_4$ and $g_3 = 140G_6$

• The theorem about the modular forms implies that $\Delta(z) = (g_2(z))^3 - 27(g_3(z))^2 \neq 0$ except $z = i\infty$

• One may ask when do two elliptic curves \mathbb{C}/L are considered as the same.

- One may ask when do two elliptic curves \mathbb{C}/L are considered as the same.
- Intuitively, the lattice *L* remains the same if you rotates or translate the whole plane or scratch both generators at the same amount .

- One may ask when do two elliptic curves \mathbb{C}/L are considered as the same.
- Intuitively, the lattice *L* remains the same if you rotates or translate the whole plane or scratch both generators at the same amount .
- Mathematically, it is done by the set of 2×2 matrices with integers entries and determinant 1.

This means $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \begin{pmatrix} a\tau + b \\ c\tau + d \end{pmatrix} = \begin{pmatrix} \tau' \\ 1 \end{pmatrix}$ should implies τ and τ' defines the same lattice *L*.

- In geometry, moduli space is the space such that the points classify certain geometric object.
 - Example: **circles** can be classified by the **radius**, so the **moduli space** is the **positive real line**.

• In geometry, moduli space is the space such that the points classify certain geometric object.

Example: **circles** can be classified by the **radius**, so the **moduli space** is the **positive real line**.

• Then the **moduli space of elliptic curve** should consists points which cannot be related to other points by those special matrix.

• In geometry, moduli space is the space such that the points classify certain geometric object.

Example: **circles** can be classified by the **radius**, so the **moduli space** is the **positive real line**.

• Then the **moduli space of elliptic curve** should consists points which cannot be related to other points by those special matrix.

• This means for any point z outside the grey region, there exists a matrix that can brought z inside the grey region.

• In geometry, moduli space is the space such that the points classify certain geometric object.

Example: **circles** can be classified by the **radius**, so the **moduli space** is the **positive real line**.

• Then the **moduli space of elliptic curve** should consists points which cannot be related to other points by those special matrix.

- This means for any point z outside the grey region, there exists a matrix that can brought z inside the grey region.
- It is the **fundamental domain** of the group action of on the upper-half plane by $\gamma(z) = \frac{az+b}{cz+d}$ where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Interpretations of modular form

- Modular forms f of weight 2k are the differential forms on the moduli space such that satisfying $f(\gamma(z))d(\gamma(z))^k = f(z)dz^k$
- Modular forms f of weight 2k are the differentiable functions depend on the lattice such that f(τ) = g(1, τ) = ω₁^{2k}g(ω₁, ω₂)

Examples

- The **j-invariant function** defined by $j(z) = \frac{1728g_2(z)^3}{g_2(z)^3 27g_3(z)^2}$ satisfied $j(\frac{az+b}{cz+d}) = j(z)$
- The Eisenstein series $G_{2k}(z) = \sum_{(m,n) \in \mathbb{Z}^2 \{(0,0)\}} \frac{1}{(m+nz)^{2k}}$ satisfied $G_{2k}(\frac{az+b}{cz+d}) = (cz+d)^{2k} G_{2k}(z)$

Kenny Li (UofT)

・ロト ・四ト ・ヨト ・ ヨト

FORONTO

Modular form of weight 2k is complex differentiable function such that $f(\gamma(z)) = (cz + d)^{2k} f(z)$ and bounded when $Im(z) \to \infty$

• The condition of being bounded is to ensure that modular form can also be expressed in terms of $q = e^{2\pi i z}$.

Modular form of weight 2k is complex differentiable function such that $f(\gamma(z)) = (cz + d)^{2k} f(z)$ and bounded when $Im(z) \to \infty$

- The condition of being bounded is to ensure that modular form can also be expressed in terms of $q = e^{2\pi i z}$.
- The coefficients are surprisingly informative.

Examples

- $j(z) = q^{-1} + 744 + 196884q + 21493760q^3 + ...$ is related to the dimension of representation of monster group which has about 8×10^{53} elements
- $\frac{G_4(z)}{2\zeta(2k)} = 1 + 240q^2 + 2160q^4 + 6720q^6 + \dots = 1 + 240\sum_{n=1}^{\infty}\sigma_3(n)q^n$ is related to the optimal sphere packing in 8 dimensional space

(日)

5th July 2023

TORONTO

Applications in number theory

Kenny Li (UofT)

• **Congruent number** is a positive integer such that it is the area of a triangle with rational number sides. Example: 6 is a congruent number

 Congruent number is a positive integer such that it is the area of a triangle with rational number sides.
 Example: 6 is a congruent number

Question

Given a positive integer, can you determine whether it is congruent?

 Congruent number is a positive integer such that it is the area of a triangle with rational number sides.
 Example: 6 is a congruent number

5th July 2023

19/25

Question

Given a positive integer, can you determine whether it is congruent?

• It was considered by ancient Greeks and Arabs.

 Congruent number is a positive integer such that it is the area of a triangle with rational number sides.
 Example: 6 is a congruent number

Question

Given a positive integer, can you determine whether it is congruent?

- It was considered by ancient Greeks and Arabs.
- But is STILL UNSOLVED NOW !

Elliptic curve and congruent number

• n is congruent number if and only if elliptic curve $y^2 = x^3 - n^2 x$ has infinitely many rational number points.

- n is congruent number if and only if elliptic curve $y^2 = x^3 n^2 x$ has infinitely many rational number points.
- It is closely related to a US\$1,000,000 problem.

Conjecture (Birch and Swinnerton-Dyer)

For r is rank of the group of **elliptic curve over rational number** $E(\mathbb{Q})$ such that it is isomorphic to $E(\mathbb{Q})_{tors} \bigoplus \mathbb{Z}^r$, it is conjectured that the **L** function satisfies

$$L(E,s)=(s-1)^rg(s)$$

where g(s) is complex differentiable and nonzero at s = 1.

20 / 25

5th July 2023

- n is congruent number if and only if elliptic curve $y^2 = x^3 n^2 x$ has infinitely many rational number points.
- It is closely related to a US\$1,000,000 problem.

Conjecture (Birch and Swinnerton-Dyer)

For r is rank of the group of **elliptic curve over rational number** $E(\mathbb{Q})$ such that it is isomorphic to $E(\mathbb{Q})_{tors} \bigoplus \mathbb{Z}^r$, it is conjectured that the **L** function satisfies

$$L(E,s)=(s-1)^rg(s)$$

where g(s) is complex differentiable and nonzero at s = 1.

• If this holds true for elliptic curve $y^2 = x^3 - n^2 x$ then there is an algorithm that can check whether *n* is congruent or not.

- n is congruent number if and only if elliptic curve $y^2 = x^3 n^2 x$ has infinitely many rational number points.
- It is closely related to a US\$1,000,000 problem.

Conjecture (Birch and Swinnerton-Dyer)

For r is rank of the group of **elliptic curve over rational number** $E(\mathbb{Q})$ such that it is isomorphic to $E(\mathbb{Q})_{tors} \bigoplus \mathbb{Z}^r$, it is conjectured that the **L** function satisfies

$$L(E,s)=(s-1)^rg(s)$$

where g(s) is complex differentiable and nonzero at s = 1.

- If this holds true for elliptic curve $y^2 = x^3 n^2x$ then there is an algorithm that can check whether *n* is congruent or not.
- But what is L function?

• Prototype: Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ The fact that $\zeta(1 + it) \neq 0$ was used to prove that $\#\{\text{prime } \leq x\} \sim \frac{\log(x)}{x}$

- Prototype: Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ The fact that $\zeta(1 + it) \neq 0$ was used to prove that $\#\{\text{prime } \leq x\} \sim \frac{\log(x)}{x}$
- First L function: Dirichlet L function L(s, χ) = ∑_{n=1}[∞] χ(n)/n^s
 The fact that L(1, χ) ≠ 0 was used to prove that there are infinitely many prime of the form a + nd for gcd(a, d) = 1

- Prototype: Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ The fact that $\zeta(1 + it) \neq 0$ was used to prove that $\#\{\text{prime } \leq x\} \sim \frac{\log(x)}{x}$
- First L function: Dirichlet L function L(s, χ) = ∑_{n=1}[∞] χ(n)/n^s
 The fact that L(1, χ) ≠ 0 was used to prove that there are infinitely many prime of the form a + nd for gcd(a, d) = 1
- The idea of L functions is to make a(n) to series $\sum_{n=1}^{\infty} \frac{a(n)}{n^s}$

- Prototype: Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ The fact that $\zeta(1 + it) \neq 0$ was used to prove that $\#\{\text{prime } \leq x\} \sim \frac{\log(x)}{x}$
- First L function: Dirichlet L function L(s, χ) = ∑_{n=1}[∞] χ(n)/n^s
 The fact that L(1, χ) ≠ 0 was used to prove that there are infinitely many prime of the form a + nd for gcd(a, d) = 1
- The idea of L functions is to make a(n) to series $\sum_{n=1}^{\infty} \frac{a(n)}{n^s}$
- In fact, the coefficients of some spacial kind of modular form is associated to L function.

Example

For
$$\Delta(z) = (g_2(z))^3 - 27(g_3(z))^2 = \sum_{n=1}^{\infty} \tau(n)q^n$$
,
the series $\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}$ is a L function called **Ramanujan L function**

TORONTC

• The definition of L function of elliptic curves is complicated.

- The definition of L function of elliptic curves is complicated.
- For $E_n: y^2 = x^3 n^2 x$,

$$L(E_n,s) = \frac{\zeta(s)\zeta(s-1)}{\prod_p Z(E_n \setminus \mathbb{F}_p, p^{-s})} = \prod_{p \nmid 2n} \frac{1}{1 - 2a_{E,p}p^{-s} + p^{1-2s}}$$

where $Z(E_n \setminus \mathbb{F}_p, T) = \exp(\sum_{r=1}^{\infty} \frac{N_r}{r}(T)^r)$ and N_r is number of points over \mathbb{F}_{p^r} on the elliptic curve.

- The definition of L function of elliptic curves is complicated.
- For $E_n: y^2 = x^3 n^2 x$,

$$L(E_n,s) = \frac{\zeta(s)\zeta(s-1)}{\prod_p Z(E_n \setminus \mathbb{F}_p, p^{-s})} = \prod_{p \nmid 2n} \frac{1}{1 - 2a_{E,p}p^{-s} + p^{1-2s}}$$

where $Z(E_n \setminus \mathbb{F}_p, T) = \exp(\sum_{r=1}^{\infty} \frac{N_r}{r}(T)^r)$ and N_r is number of points over \mathbb{F}_{p^r} on the elliptic curve.

• What if we write it in the form $L(E,s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$?

- The definition of L function of elliptic curves is complicated.
- For $E_n: y^2 = x^3 n^2 x$,

$$L(E_n,s) = \frac{\zeta(s)\zeta(s-1)}{\prod_p Z(E_n \setminus \mathbb{F}_p, p^{-s})} = \prod_{p \nmid 2n} \frac{1}{1 - 2a_{E,p}p^{-s} + p^{1-2s}}$$

where $Z(E_n \setminus \mathbb{F}_p, T) = \exp(\sum_{r=1}^{\infty} \frac{N_r}{r}(T)^r)$ and N_r is number of points over \mathbb{F}_{p^r} on the elliptic curve.

- What if we write it in the form $L(E, s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$?
- Turns out

$$f(E,q) = \sum_{n=1}^{\infty} a(n)q^n$$

is a modular form !

Modularity theorem

Elliptic curve E over rational number can be obtained by rational map from the **modular curve** $X_0(N)$.

The idea of modular curve is to **classify elliptic curves with** extra condition.

The modular curve $X_0(N)$ is the compactified quotient of upper-half plane by the set of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfying $c \equiv 0 \pmod{N}$. The associated information about elliptic curve is its **cyclic subgroup of order N**.

Fermat's last theorem

 $x^n + y^n = z^n$ has no positive integer solution for $n \ge 3$

- It was conjectured by Fermat in 1637.
- The case n = 3 was proved by Euler in 1770.
- Some special cases was proved by using algebraic number theory in 19th and early 20th century.
- Suppose $a^p + b^p = c^p$ for positive integer a, b, c and prime p > 3, Frey related it to **elliptic curve** $y^2 = x(x - a^p)(x - b^p)$ in 1986.
- Ribet showed that the elliptic curve created by *a*, *b*, *c* is **semistable and not modular** in 1990.
- Wiles proved the **modularity theorem** for the semistable elliptic curve in 1995.

By contradiction, it proved Fermat's last theorem.

24 / 25

- Omplex elliptic curve is a torus.
- **2** Its name comes from the relationship with elliptic function.
- Modular form is function of lattice and form of space classifying elliptic curve.
- Gefficients of modular form are informative.
- Solution Elliptic curve itself is related to congruent problem.
- The connection of elliptic curve and modular form leads to the proof of Fermat's last theorem.