
A survey of lower bounds in
arithmetic circuit complexity

https://github.com/dasarpmar/lowerbounds-survey/
Version 9.0.3

SHA: 7dc9b26bf88d2a63a7d5e9bf7243eb00284a76a8

Ramprasad Saptharishi
Tata Institute of Fundamental Research

ramprasad@tifr.res.in

cbna

Preface

Arithmetic circuit complexity has seen a flurry of activity recently with respect to lower

bounds. There suddenly seems to be some optimism proving explicit circuit lower bounds

in the near future. Besides the question of lower bounds, there has also been tremendous

progress on polynomial identity testing and polynomial reconstruction as well.

In 2014, I was a part of two surveys on arithmetic circuit lower bounds. The first one

[KS14a] was with Neeraj Kayal, and was a part of a volume dedicated to Somenath Biswas’

60th Birthday Celebrations. This survey was a comprehensive article of almost all known

lower bound proofs at that time. Soon after the survey was written, there were more lower

bounds proved for homogeneous depth four circuits. The second survey [Sap14] appeared in

the Bulletin of the EATCS and this focused on those lower bounds for homogeneous depth

four circuits (among some other results).

Instead of writing a new survey every time there are a fresh set of lower bounds, a better

idea was to have one expanding survey that is kept up to date with the current state of the

art. Much like an application, that keeps getting updated and new releases. Also, this would

be greatly accelerated if the community could contribute by looking for bugs, adding more

content, changing presentation etc. The natural answer to all this was to do this the way

software applications are built, and I chose github as that is the most popular platform for

this.

This survey would be present on https://github.com/dasarpmar/lowerbounds-survey

and anyone is welcome to contribute to it. The github repository also has a wiki to assist

people who are new to git and/or github.

What to expect from this article

Most of the proofs in this article are complete and self-contained. However, as one would

expect in the more delicate proofs, there would eventually involve a fair amount of calculation

1

and setting of parameters. There might be proofs where this last technical calculation is

avoided, but the hope is to make the presentation insightful enough so that it would enable

any student to do the calculations (him/her)self.

Also, quite a lot of the proofs presented here are slightly different from the original

proofs. The reason for the deviation would almost always be for more clarify and intuition.

However, this process might also make the parameters involved a little weaker than in the

original statements. We shall try to ensure that such losses do not change the overall strength

of the theorem by much, and if they do we shall mention that explicitly.

Why do we need this?

So why are super polynomial lower bounds still not proved? Maybe it’s because

not enough people are working on it. – Ran Raz (in [Raz10b])

I strongly believe that the above statement really hits the nail on the head. Fortunately,

over the last few years we have seen such a phenomenal activity in arithmetic circuit lower

bounds and an increased optimism that we can indeed soon prove super-polynomial circuit

lower bounds. In fact, a lot of the recent lower bounds have come really close to this goal.

The hope of this survey is that this would assist people familiarize with the known lower

bounds and develop the necessary tools. As a student, the surveys of [SY10, CKW11] were

immensely helpful and this is an attempt to give back to the community.

Ramprasad Saptharishi

Version 9.0.3

cbna

Free distribution of this work is encouraged, and this may be copied/distributed in any form. This work is

licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. For

license details, see http://creativecommons.org/licenses/by-nc-sa/4.0/

2

Contributors to this article

Content

• Ramprasad Saptharishi (Tel Aviv University)

ramprasad@cmi.ac.in

• Suryajith Chillara (Chennai Mathematical Institute)

suryajith@cmi.ac.in

Parts of Chapter 7

• Mrinal Kumar (Rutgers University)

mrinal.kumar@rutgers.edu

Chapter 26

• Anamay Tengse (Tata Institute of Fundamental Research)

tengse.anamay@tifr.res.in

Chapter 15

Corrections, minor edits

• V Vinay (Limberlink Technologies)

vinay@jed-i.in

• Noam Mazor (Tel Aviv University)

• Amir Shpilka (Tel Aviv University)

shpilka@post.tau.ac.il

3

• Anamay Tengse (Tata Institute of Fundamental Research)

tengse.anamay@tifr.res.in

• Suhail Sherif (Tata Institute of Fundamental Research)

suhail.sherif@gmail.com

• Christian Engels

https://github.com/Narfinger

• Prateek Dwivedi

https://github.com/prateekdwv

• Prerona Chatterjee

http://www.tifr.res.in/~prerona.chatterjee/

• anag004@github

https://github.com/anag004

• Srikanth Srinivasan

AarhusUniversity

4

Contents

1 Introduction 12

1.1 Arithmetic complexity classes . 13

1.2 Prior lower bounds . 14

1.3 Relevance of shallow circuits for “VP vs VNP” 14

I Preliminaries 18

2 Notation and Preliminaries 19

2.1 Models of computation . 19

2.1.1 Constant depth circuits . 21

2.2 Polynomials of interest . 22

3 Algebraic complexity classes 25

3.1 Definition of classes . 25

3.2 Some properties of these classes . 27

3.3 Reductions and completeness . 28

3.3.1 Warm-up: Formulas to permanents 28

3.3.2 ABPs reduce to Detn . 30

3.3.3 Detn can be computed by ABPs . 31

3.3.4 Completeness of the permanent . 34

4 Some estimates for binomial coefficients 38

5 Structural Results 40

5.1 Homogenization . 40

5.2 Interpolation . 41

5.2.1 Computing homogeneous components 43

5

5.3 Depth reduction . 44

5.3.1 Depth reduction for arithmetic formulas 45

5.3.2 Depth reduction for arithmetic circuits 46

5.3.3 Reduction to depth four circuits . 53

5.3.4 Depth reduction for formulas, again 55

II Classical lower bounds 58

6 Lower bounds for general circuits and formulas 59

6.1 Lower bounds for general circuits . 59

6.1.1 An exploitable weakness . 59

6.1.2 Computing all first order derivatives simultaneously 61

6.2 Lower bounds for formulas . 62

6.2.1 Upper bounding Γ[Kal] for a formula 63

6.2.2 Lower bounding Γ[Kal](Detn) . 66

7 Determinantal Complexity Lower Bounds 67

7.1 Why Hessian? . 68

7.2 The lower bound of Mignon-Ressayre . 70

8 Some simple lower bounds 73

8.1 “Natural” proof strategies . 73

8.1.1 Lower bounds for ΣΠ circuits . 74

8.1.2 Lower bounds for Σ∧Σ circuits . 75

8.1.3 Low-rank ΣΠΣ . 76

8.2 Lower bounds for monotone circuits . 77

III Partial Derivative Spaces 81

9 Lower bounds for depth-3 circuits 82

9.1 Lower bounds for hom. ΣΠΣ circuits [NW97] 82

9.2 Handling few high degree gates . 83

9.3 Shpilka and Wigderson’s lower bound for ΣΠΣ circuits 84

9.3.1 Rough proof of Theorem 9.6 . 86

6

10 Lower bounds for depth-3 circuits over finite fields 88

10.1 The complexity measure . 89

10.2 Upper-bounding Γ
[GK]
k,A for a depth-3 circuit 90

10.3 Lower bound for Detd and Permd . 91

10.3.1 Proof of Lemma 10.5 . 92

10.4 Lower bound for Sym≤d . 95

10.4.1 Proof of Lemma 10.8 . 96

IV Multilinear and non-commutative models 98

11 The Partial Derivative Matrix 99

11.1 Non-commutative models of computation . 99

11.1.1 Partial derivative matrix for non-commutative ABPs 100

11.1.2 An explicit hard polynomial . 101

11.2 Applications in the commutative world . 102

11.2.1 An evaluation perspective . 103

12 Hardness amplification for non-commutative circuits 106

12.1 Intuition . 107

12.2 The hardness-preserving variable reduction 107

12.3 Proof of the main lemma . 109

13 Lower bounds for multilinear models 113

13.1 Log-product representations for formulas . 114

13.2 Lower bounds for homogeneous multilinear formulas 115

13.3 Lower bounds for (non-homogeneous) multilinear formulas 118

13.3.1 Log-products are far from full-rank on a random partition 121

13.3.2 Detn and Permn have large rank . 123

13.3.3 Constructing a full-rank polynomial 124

13.4 Stronger lower bounds for constant depth multilinear formulas 126

14 Lower bounds for multi-k-ic models 129

14.1 Revisiting the measure . 129

14.2 Proof of Theorem 14.2 . 130

7

15 Separating multilinear ABPs and formulas 134

15.1 Arc partitions . 135

15.2 Upper bound with ABPs . 137

15.2.1 Lower bound against formulas . 138

15.3 Proof sketch for Lemma 15.4 . 140

15.4 What about IMM? . 142

16 Tensor rank and formula lower bounds 143

16.1 Tensors . 143

16.1.1 Tensors as polynomials . 144

16.1.2 Rank of a tensor . 145

16.1.3 Upper bounds on tensor rank . 146

16.2 Tensor rank of small formulas . 148

16.2.1 The tensor-rank upper-bound . 149

16.2.2 Making formulas set-multilinear . 150

V Separations in the monotone world 154

17 Separating monotone circuits and monotone ABPs 155

17.1 The polynomial . 156

17.1.1 Some intuition for the lower bound 157

17.2 Isoperimetric profiles . 157

17.3 Lower bound . 158

18 Separation between monotone VP and VNP 161

18.1 Structural weakness of monotone circuits . 163

18.2 Upper bounding measure on building blocks 164

VI Lower bounds for depth four circuits 169

19 Lower bounds for depth-4 circuits with bounded bottom fan-in 170

19.1 Significance of the model . 170

19.2 Building the complexity measure . 171

19.3 Lower bounding shifted partials of explicit polynomials 173

19.3.1 Shifted partials of the determinant and permanent 174

8

19.3.2 Shifted partials of the Nisan-Wigderson polynomial 176

19.3.3 Shifted partials of the Iterated-matrix-multiplication polynomial . . . 178

19.4 A bottom fan-in hierarchy theorem . 181

20 Lower bounds for homogeneous depth four circuits 182

20.1 Reducing to ‘low-support’ depth 4 circuits 186

20.1.1 Handling random restrictions . 186

20.2 The surrogate rank approach of [KLSS17] . 189

20.3 The leading monomial approach of [KS14c] 193

VII Further applications of shifted partial derivatives 204

21 Quick summary of key points 205

21.1 Shifted Partial Derivatives . 205

21.2 Projected Shifted Partial Derivatives . 207

21.2.1 Depth four circuits of low bottom support size 208

21.2.2 Reducing to depth four circuits of low bottom support size 209

22 Evaluation perspective on projected shifted partial derivatives 211

22.1 Coefficients vs evaluations . 211

22.2 Projected shifted partials via {x2
i − xi : i ∈ [n]} 213

22.3 Lower bounds for depth five circuits over finite fields 217

22.3.1 Upper bound for a homogeneous depth-5 circuit 221

22.3.2 Lower bound for NWd,m,e . 222

23 The power of non-homogeneous depth three circuits 225

23.1 Handling non-homogeneous depth-3 circuits 226

23.2 Depth reduction to depth three circuits . 228

23.3 Revisiting the depth-five powering circuit for Symd 233

24 Depth three circuits of low bottom fan-in 235

24.1 ΣΠΣ circuits with bottom fan-in O(
√
d) . 235

24.2 ΣΠΣ circuits with bottom fan-in n1−ε . 236

24.2.1 Stronger Chernoff Bounds . 237

24.2.2 Building the hard polynomial . 239

9

25 Depth four circuits of low arity 241

25.1 The model of computation . 241

25.2 Warm-up: Small product fan-in case . 242

25.3 Taming the product fan-in . 243

26 Arithmetic circuits with locally low algebraic rank 246

26.1 Preliminaries . 247

26.1.1 Warm-up: Compositions of sparse polynomials 247

26.1.2 Algebraic Rank . 248

26.1.3 Locally low algebraic rank circuits . 249

26.2 Lower bounds for locally low algebraic rank circuits 250

26.2.1 Proof of Lemma 26.8 . 253

26.3 Functional dependence to algebraic dependence 256

VIII Limitations of lower bound techniques 258

27 Limitations of sub-additive rank methods 259

27.1 The main decomposition lemma . 263

IX Breakthrough! 266

28 Lower bounds for constant depth circuits 267

28.1 Proof overview . 268

28.2 Reducing to the set-multilinear world . 268

28.2.1 Homogenisation within small depth 269

28.2.2 Set-multilinearisation . 270

28.3 Lower bound for set-multilinear, small-depth circuits 270

28.3.1 The complexity measure . 271

28.3.2 Lower bounds for set-multilinear depth-5 circuits 272

28.3.3 Lower bounds for larger depth . 275

28.4 Getting the lower bound for IMM . 276

28.4.1 Re-interpreting the polynomial . 276

28.5 TODO: Subsequent results . 277

10

Chapter Dependencies

1,2,3,4,5

6 7 8

9 10

11 13

12

14

15

16

17

18

19 20

21 2223

24 25 26

27

: Dependency

: Not a dependency, but recommended

: Familiarity would be helpful

11

Chapter 1

Introduction

“What is the best way to compute a given polynomial f(x1, . . . , xn) from basic operations

such as + and ×?” This is the main motivating problem in the field of arithmetic circuit

complexity. The notion of complexity of a polynomial is measured via the size of the smallest

arithmetic circuit computing it. Arithmetic circuits provide a robust model of computation

for polynomials. Formally, these are directed acyclic graphs with a unique sink vertex, where

internal nodes are labelled by + and × and each source node labelled with either a variable

or a field constant. Each + gate computes the sum of the polynomials computed at its

children, and × gates the product. The unique sink vertex is called the root or the output

gate, and the polynomial computed by that gate is the polynomial computed by the circuit.

There are several interesting questions that can be asked about arithmetic circuits, and

polynomials that they compute. One category of problems are of the form, “Is there an

explicit polynomial f(x1, . . . , xn) that require (perhaps restricted) arithmetic circuits of size

2Ω(n) to compute them?”, or questions about proving lower bounds. Another category of

problems are of the form, “Is the given circuit computing the 0 polynomial?”, which is also

called ‘Polynomial Identity Testing (PIT)’. Yet another class of questions are of the form

“Given oracle access to a circuit, can you write down the polynomial computed by this cir-

cuit?”, which are also called ‘polynomial reconstruction’. Several of these problems have

very strong connections between each other despite being of very different flavours. Formal

connections between PIT and lower bounds have been shown by [KI04, Agr05]. Further,

strong lower bounds for restricted models have often been succeeded by reconstruction al-

gorithms (at least on average). In this article we shall mainly be looking at lower bounds.

For more on reconstruction and PIT questions, the author is invited to read other excellent

surveys such as [SY10, CKW11].

12

1.1 Arithmetic complexity classes

In the seminal paper of [Val79], Valiant defined two classes of polynomials which we now

call VP and VNP.

Definition 1.1. The class VP is defined as the set of all polynomial f(x1, . . . , xn) with

deg(f) = nO(1) that can be computed by an arithmetic circuit of size s = nO(1).

The class VNP is defined as the set of all polynomial f(x1, . . . , xn) such that there exists

a g(x1, . . . , xn, y1, . . . , ym) ∈ VP with m = nO(1) such that

f(x1, . . . , xn) =
1∑

y1=0

· · ·
1∑

ym=0

g(x1, . . . , xn, y1, . . . , ym).

♦

The class VP is synonymous to what we understand as efficiently computable polynomials.

The class VNP, whose definition is similar to the boolean class NP, is in some sense a notion

of what deem as explicit.

Fact 1.2. Let f(x1, . . . , xn) be a polynomial such that deg(f) = nO(1) and given any expo-

nent vector e1, . . . , en, the coefficient of the monomial xe11 . . . xenn in f can be computed in

polynomial time. Then, f ∈ VNP.

For example, consider the permanent of a symbolic n×n matrix. In fact, [Val79] showed

that the symbolic n×n permanent is in some sense complete for the class VNP. Further, he

also showed that the determinant of a symbolic n × n matrix is (almost) complete for the

class VP. Separating the determinant and the permanent is the Holy Grail in the field of

arithmetic circuit complexity.

Remark. Note that the above fact merely gives a sufficient condition for a polynomial

to be in VNP. There are examples of polynomials f where computing the coefficient of a

given monomial is believed to be very hard but f ∈ VNP.1 In this article however, all the

polynomials we shall be dealing with would have this property that the coefficient of a given

monomial can be efficiently computed. For more about completeness classes in arithmetic

complexity, [BCS97] is a wonderful text.

1For example, consider the n2 variate multilinear polynomial f such that the coefficient xe11
11 . . . xenn

nn is
the permanent of the n×n matrix ((eij))i,j . Turns out f ∈ VNP. In fact, a necessary and sufficient condition
is that the coefficient of a given monomial can be computed in #P/poly.

13

1.2 Prior lower bounds

Proving lower bounds is generally considered challenging, in most models of computation.

For general circuits, the best lower bound we have for an explicit polynomial is by [BS83]

who prove an Ω(n log n) lower bound. For the subclass of arithmetic formulas, [Kal85] has

shown a Ω(n3/2) lower bound. On the other hand, we know by standard counting methods

that most n-variate degree d polynomials require circuits of size Ω

(√(
n+d
d

))
.

To gain better understanding of computation by arithmetic circuits, researchers focused

on proving lower bounds for restricted models of computation. One very natural restriction is

the depth of the circuit. Proving lower bounds for depth two circuits are trivial. For general

depth three circuits, the best lower bound we have is by [SW01] who present an Ω(n2) lower

bound. Exponential lower bounds are known with additional restrictions like homogeneity

[NW97], multilinearity [Raz09, RY09], over finite fields [GR00, GK98], monotonicity [JS82]

etc.

For multilinear models, more is known for even larger depth. [Raz09] showed an nΩ(logn)

lower bound for the class of multilinear formulas. [RY09] extended those techniques to show

an 2n
Ω(1/∆)

lower bound for multilinear formulas of depth ∆.

1.3 Relevance of shallow circuits for “VP vs VNP”

The study of lower bounds for shallow circuits is not just an attempt to simplify the problem

and gain insight on the larger goal. The class of shallow arithmetic circuits are surprisingly

powerful, unlike the boolean case. Shallow circuits in the arithmetic world almost capture

the entire computational power of unrestricted circuits!

There has been a long series of results that simulate a general arithmetic circuit C by a

shallow circuit of size comparable to the size of C. This task simulating a circuit but another

not-too-large circuit of small depth is called depth reduction. The first result in this regard

is by [VSBR83] who proved the following.

Theorem 1.3 ([VSBR83]). Let f be an n-variate degree d polynomial computed by an arith-

metic circuit C of size s. Then, f can be equivalently computed by a homogeneous circuit C ′

of depth O(log d) with unbounded fan-in + and × gates and size s′ = (nds)O(1).

The above theorem allows us to focus on just homogeneous circuits of O(log d) depth

and attempt lower bounds for this model. Any super-polynomial lower bound for the class

14

of O(log d) depth circuits automatically yields a super-polynomial lower bound for general

circuits.

However, if we really hope to prove much stronger lower bounds for Permn like say 2Ω(n),

maybe we can afford to incur a slightly larger blow-up in size to obtain an even shallower

circuit. This line was first pursued by [AV08], and subsequently strengthened by [Koi12] and

[Tav15] to yield the following result.

Theorem 1.4 ([AV08, Koi12, Tav15]). Let f be an n-variate degree d polynomial computed

by an arithmetic circuit of size s. Then f can be computed by a homogeneous ΣΠ[O(
√
d)]ΣΠ[

√
d]

circuit of size s′ ≤ sO(
√
d)

More generally, for any 0 ≤ r ≤ d, there is a homogeneous ΣΠ[O(d/r)]ΣΠ[r] circuit of top

fan-in at most sO(d/t) computing f .

Recall that a ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit computes a polynomial of the form

f =
s∑
i=1

Qi1 . . . Qia, where a = O(
√
d) and degQij ≤

√
d.

In other words, if we can prove a lower bound of nω(
√
d) for the class of ΣΠ[O(

√
d)]ΣΠ[

√
d]

circuits, we would have a super-polynomial lower bound for the class of general arithmetic

circuits! In fact, the model of depth 4 circuits seem so central in that almost all known lower

bounds for other restricted models proceed by proving a suitable lower bound for a depth 4

analogue. Several examples of this may be seen in [KS14a].

The first breakthrough was obtained by [GKKS14] who showed an 2Ω(
√
d) lower bound

for such circuits computing the symbolic d × d determinant or permanent. Subsequently,

there was a flurry of activity towards achieving the goal of proving nω(
√
d) lower bounds

[KSS14, FLMS15, KS14b], and this is where we currently stand.

Theorem 1.5. There is an explicit homogeneous n-variate degree d polynomial f that can be

computed by a homogeneous depth 4 circuit of size nO(1) but any ΣΠ[O(
√
d)]ΣΠ[

√
d] computing

it requires top fanin s = nΩ(
√
d).

If we could change the nΩ(
√
d) to nω(

√
d) in the above theorem (of course, the polyno-

mial f cannot then have a small arithmetic circuit computing it), we would have proved a

super-polynomial lower bound for general arithmetic circuits! The following is the simplest

15

formulation of a lower bound of shallow circuit that would imply lower bounds for general

circuits.

Open Problem 1.1

Find an explicit n-variate degree d polynomial f such that any expression of the form

f = (Q1)
√
d + · · ·+ (Qs)

√
d , deg(Qi) ≤

√
d for all i

must have s = nω(
√
d).

Subsequent to this line of work, several researchers addressed the task of proving lower

bounds for homogeneous depth 4 circuits without any restriction on the fan-ins. It is worth

noting that a lower bound for homogeneous depth 4 circuits must be on the total size and

not the top fan-in, as otherwise one could just compute the polynomial f in a single gate of

the bottom two layers.

What to expect from this article

This article is intended to be a rolling survey of (almost) all known lower bounds in arith-

metic circuit complexity. Most of the proofs in this article are complete and self-contained.

However, as one would expect in the more delicate proofs, there would eventually involve a

fair amount of calculation and setting of parameters. There might be proofs where this last

technical calculation is avoided, but the hope is to make the presentation insightful enough

so that it would enable any student to do the calculations (him/her)self.

Also, quite a lot of the proofs presented here are slightly different from the original proofs.

The reason for the deviation would almost always be for more clarify and intuition. How-

ever, this process might also make the parameters involved a little weaker than in the original

statements. We shall try to ensure that such losses do not change the overall strength of the

theorem by much, and if they do we shall mention that explicitly.

Disclaimer: At many points in the survey we may use words like ‘recently’. This may

have been true at the time of writing but perhaps not any more. :-)

16

What is not (yet) covered in this survey

There are surely a few notable lower bounds that are not (yet) discussed in the survey. A

few that come to mind are the super-linear lower bound of Raz, Shpilka and Yehudayoff for

syntactic multilinear circuits [RSY08], a recent improvement of this by Alon, Kumar and

Volk [AKV18] and some more recent lower bounds involving shifted partial derivatives that

are yet to be included.

Besides lower bounds, there are many approaches to prove lower bounds such as Raz’s

lower bound approach via elusive functions [Raz10a], or Valiant’s rigidity approach, or the

sum-of-squares question of [HWY10], or the Real τ conjecture, Geometric Complexity Theory

etc.

Perhaps some of these gaps shall be filled in the near2 future. Perhaps.

2:-)

17

Part I

Preliminaries

18

Chapter 2

Notation and Preliminaries

We first explain some notation that shall be used throughout this article.

• In most cases, the degree of the polynomial shall be denoted by d and the number

of variables shall be denoted by n. In some cases, n would refer to a parameter that

would determine the number of variables (though perhaps not exactly).

• Almost all the polynomials that we shall be studying would be multilinear. In multi-

linear polynomials, we shall identify a monomial with the set of variables that it is a

product of. This would allow us to abuse notation and say xi ∈ m to mean that xi

divides the monomial m, or to say m1 ∩m2 to refer to the gcd(m1,m2). We shall also

use the notation m ∈ f to mean that the polynomial m has a non-zero coefficient for

the monomial m.

• We shall use [n] to denote {1, . . . , n} and we shall use boldface letters such as x to

denote sets of variables. Further, x[n] shall refer to a set of variables {x1, . . . , xn}.
However, if the number of variables is understood, we shall drop the subscript.

2.1 Models of computation

As mentioned earlier, the most robust model of computation that are studied are arithmetic

circuits, which are formally defined as follows.

Definition 2.1 (Arithmetic circuits and formulas). An arithmetic circuit is a directed acyclic

graph with a unique sink vertex called the root. The source vertices are labelled by either

formal variables or field constants, and each internal node of the graph is labelled by either +

19

or ×. Nodes compute formal polynomials in the input variables in the natural way. Further,

edges entering a + nodes also might have field constants on them to allow the + to compute

an F-linear combination of the children (rather than just a sum).

The polynomial computed by the circuit is defined as the polynomial computed by the root.

If the underlying graph is a tree instead of a general acyclic graph, the circuit is called a

formula. ♦

Another model of computation that is studied often is the model algebraic branching

programs, defined as follows.

Definition 2.2 (Algebraic Branching Program). An algebraic branching program (ABP) is

a layered graph with a unique source vertex (that we shall call s) and a unique sink vertex

(that we shall call t). All edges are from layer i to layer i+ 1, and each edge is labelled by a

linear polynomial. The polynomial computed by the ABP is defined as

f =
∑
γ:s t

wt(γ)

where for every path γ from s t, the weight wt(γ) is defined as the product of the labels

over the edges in γ. ♦

The width of the ABP is defined as the maximum number of vertices in any layer, and

the depth is defined as the length of the longest path from s to t. The polynomial computed

by an ABP is captured by the iterated matrix multiplication polynomial that we shall soon

see.

It is easy to observe that any arithmetic formula of size s can be simulated by an algebraic

branching program of size poly(s), and any algebraic branching program of size s can be

simulated of an arithmetic circuit of size poly(s). It is a major open problem to show a

separation between any of these.

Formulas ⊆ ABPs ⊆ Circuits

Open Problem 2.1

Show a super-polynomial separation between any of the models – formulas, ABPs and

20

circuits.

2.1.1 Constant depth circuits

We shall be dealing a lot with constant depth circuits. Normally, the root is assumed to be

a + gate1 and the circuit is assumed to consist of alternating layers of + and × gates. A

layer of + gates are called Σ layers, and a layer of × gates are called Π layers. Thus, a depth

two circuit consist of the form

f =
s∑
i=1

d∏
j=1

xij

is a ΣΠ circuit.

Fact 2.3. Any arithmetic circuit of depth ∆ and size s, can be simulated by an arithmetic

formula of depth ∆ and size s′ ≤ s∆.

Thus for constant depth circuits (where ∆ = O(1)), we may assume that we are dealing

with formulas without much loss of generality.

It would also be useful to keep track of the fan-in of the gates in a certain layer (especially

of multiplication gates). We shall use superscripts to denote this. For example, an ΣΠ[a]ΣΠ[b]

circuits computes a polynomial of the form

f =
∑
i

a∏
j=1

Qij

where each Qij is a polynomial of degree at most b.

It would also be useful to consider special layers of multiplication gates that multiply

the same polynomial several times, rather than multiplying several different polynomials

together. Since such gates simply raise the input to a certain power, these would be called

exponentiation gates. A layer of exponentiation will be denoted by ∧ 2 and, for example, a

1The reason for this is that often the polynomial computed by the circuits would be irreducible, and
hence would be silly to have a × gate as a root.

2To say a little on the choice of notation, it was introduced in [GKKS16] and the first choice was to use
∧, but looked rather ugly to write it as say Σ∧Σ. Hence, Σ∧Σ was chosen instead.

21

Σ∧Σ circuit computes a polynomial of the form

f =
s∑
i=1

`di

where each `i is a linear polynomial.

Exercise 2.1 Show that any constant width ABP can be simulated by a polynomial sized

formula.

2.2 Polynomials of interest

There are a few polynomials that are the usual suspects while proving lower bounds. The

polynomials that we would be dealing with in this article are defined below.

The determinant and the permanent families

The determinant of an n× n symbolic matrix shall be denoted by Detn and is defined as

Detn =
∑
σ∈Sn

sign(σ)x1,σ(1) . . . xn,σ(n).

The permanent of an n× n symbolic matrix shall be denoted by Permn and is defined as

Permn =
∑
σ∈Sn

x1,σ(1) . . . xn,σ(n).

Both of these polynomials are of degree n and over n2 variables. We know that Detn

can be computed by a polynomial sized arithmetic circuit and it is widely believed that the

permanent requires circuits of size 2Ω(n).

The Nisan-Wigderson polynomial families

Definition 2.4 (Nisan-Wigderson Polynomials). Let n,m, d be arbitrary parameters with m

being a power of a prime, and n, d ≤ m. Since m is a power of a prime, let us identify the

set [m] with the field Fm of m elements. Note that since n ≤ m, we have that [n] ⊆ Fm. The

22

Nisan-Wigderson polynomial with parameters n,m, d, denoted by NWn,m,d is defined as

NWn,m,d(x) =
∑

p(t)∈Fm[t]
deg(p)≤d

x1,p(1) . . . xn,p(n).

That is, for every univariate polynomial p(t) ∈ Fm[t] of degree at most d, we add one mono-

mials that encodes the ‘graph’ of p on the points [n]. This is a polynomial of degree n over

mn variables. ♦

This monomials of this polynomial satisfy a very useful “low pairwise-intersection” prop-

erty.

Lemma 2.5. Let m1 and m2 be any two distinct monomials in NWn,m,d(x). Then, there

are at most d variables that divide both m1 and m2.

Proof. Let m1 and m2 correspond to univariates p1(t), p2(t) ∈ Fm[t] of degree at most d.

Then if xij divides m1, then p1(i) = j, similarly for m2. But since p1 and p2 are two distinct

polynomials of degree at most d, they can agree in at most d evaluations. Thus, there can

be at most d variables that divide both m1 and m2.

For most generic choices of the parameters, the polynomial NWn,m,d is believed to require

circuits of exponential size to compute them.

The Iterated-Matrix-Multiplication polynomial

For parameters n and d, the Iterated-Matrix-Multiplication polynomial, denoted by IMMn,d,

is defined as follows

IMMn,d =
∑

1≤i1,...,id≤n

x
(1)
1,i1
x

(2)
i1,i2

. . . x
(d−1)
id−2,id−1

x
(d)
id−1,1

.

An equivalent way of defining the polynomial as the (1, 1)-th entry of the product of d generic

n× n matrices:

IMMn,d =



x

(1)
11 . . . x

(1)
1n

...
. . .

...

x
(1)
n1 . . . x

(1)
nn

 · · ·

x

(d)
11 . . . x

(d)
1n

...
. . .

...

x
(d)
n1 . . . x

(d)
nn




(1,1)

.

23

It is often useful to think of this as the polynomial computed by a generic algebraic

branching program of width n and depth n (where the edge connecting vertex i of layer ` to

vertex j of layer `+ 1 has weight x
(`)
ij).

This is a polynomial of degree d and over n2(d − 2) + 2n variables3. Further, since the

polynomial corresponds to a generic algebraic branching program, IMMn,d can be computed

by an arithmetic circuit of size poly(n, d).

3Only the first row of the first matrix, and the first column of the last matrix participates in the (1, 1)
entry of the product

24

Chapter 3

Algebraic complexity classes

Valiant [Val79] defined two algebraic complexity classes that can be thought of as analogues of

the boolean classes P and NP. This chapter focuses on their definitions, and some important

properties related to the polynomial families Detn and Permn.

3.1 Definition of classes

Recall that P is1 the class of boolean functions that can be computed by circuits of polynomial

size. As any boolean function can be expressed as a multilinear2 polynomial, an analogue

of this in the arithmetic world could be multilinear polynomials f(x1, . . . , xn) that can be

computed by arithmetic circuits of size poly(n). However, unlike in the boolean world, the

polynomial x2 is not equal to the polynomial x as we are dealing with formal polynomials.

Valiant’s definition of VP was the class of the class of “low degree” polynomials that can be

computed by circuits of small size.

Definition 3.1 (Valiant’s P). The class VP refers to the set of polynomials f(x1, . . . , xn) of

degree poly(n) that can be computed by arithmetic circuits of size poly(n). ♦

In the literature, one also encounters classes such as VBP and VF that correspond to poly-

nomials computed by polynomial-sized ABP and formulas respectively. These are subclasses

of VP by definition.

1If one is to be more precise, this is P/ poly or non-uniform P. But in this article, we shall be interested
only in the non-uniform versions since we mainly deal with circuit sizes.

2A polynomial where the degree in any variable is bounded by 1.

25

More on the low-degree restriction

But should the analogue of VP not be the class of polynomials that are computable by

poly(n)-sized arithmetic circuits, including polynomials of very large degree? We can indeed

compute polynomials of very large degree, such as a circuit that is a chain of s multiplication

gates thus computing a polynomial of degree exp(s) (by repeated squaring). Let us first take

a moment to understand why the additional restriction of “low-degree” in the above defini-

tion of VP was imposed. There are several intuitive reasons for this, and this “restricted”

definition also yields beautiful structural results. This discussion is from an answer by Joshua

Grochow on cstheory.SE [Gro] to shed more light on the above definition.

1. Every boolean function can be expressed as a multilinear polynomial. Multilinear

polynomials are, of course, polynomials of “low degree”.

2. Much of the earlier work was based on understanding formula size. In the case of

arithmetic formulas, the degree cannot be more than the size of the formula. If a

polynomial is computed by a poly(n) sized formula, then its degree must be bounded

by poly(n) too.

3. Most interesting polynomials, such as Detn or Permn, are in fact of low degree. Once

we choose to deal with only polynomials of low degree, the above definition does not

have any restriction on the circuit used to compute it (besides its size). It is certainly

possible that intermediate computations of the circuit could involve very large degree

polynomials.

However, as we shall soon see, Strassen’s result shows that such high degree computa-

tions may be eliminated with just an O(deg2) increase in size. Dealing with low-degree

circuits also makes the class robust under this transformation. Eliminating division

gates also only incurs an O(deg2) increase in size.

4. Without this restriction, one cannot hope to show that Detn or Permn is “complete”

for such classes, or show the numerous structural results such as depth reduction that

we have.

Having said that, there is also a notion of “degree” in a boolean circuit that is defined

syntactically as follows:

Degree of all leaves is 1.

26

For any OR gate, the degree is the maximum of the degree of its children.

For any AND gate, the degree is the sum of the degree of its children.

The class of boolean functions that can be computed by poly-sized poly-degree circuits coin-

cide with a class called LOGCFL or SAC1. With this notion, one might say that VP is really

an analogue of SAC1.

We now move on to the arithmetic analogue of the class NP. Recall that the class NP

may be defined as the set of all boolean functions f(x1, . . . , xn) such that there is some

g(x1, . . . , xn, y1, . . . , ym) with m = poly(n) and

f(x1, . . . , xn) =
∨

a∈{0,1}m
g(x1, . . . , xn, a1, . . . , am).

Valiant’s NP is defined analogously by replacing the OR by a sum.

Definition 3.2 (Valiant’s NP). The class VNP is defined to be the set of polynomials f(x1, . . . , xn)

such that there is some g(x1, . . . , gn, y1, . . . , ym) ∈ VP with m = poly(n) and

f(x1, . . . , xn) =
∑

a∈{0,1}m
g(x1, . . . , xn, a1, . . . , am).

♦

It follows from definitions that VF ⊆ VBP ⊆ VP ⊆ VNP. We do not know if any of the

containments is strict (although it is widely believed that all of them are).

3.2 Some properties of these classes

We shall state a few properties of these classes here. For a more extensive treatment,

Bürgisser’s book [Bür00] has a comprehensive study of these classes and a lot of the proofs

presented in this chapter are based on the description in his book.

Valiant [Val79] presented a very useful sufficient condition to show that a given polynomial

is in VNP.

Theorem 3.3 (Valiant’s Criterion). Let f =
∑

e c(e) · xe11 . . . xenn . Suppose the function ϕ

that takes as input the exponent vector e = (e1, . . . , en) and outputs the coefficient c(e) is in

the class #P/ poly, then f ∈ VNP.

27

Thus in particular, if we compute the coefficient for a given monomial in polynomial

time, then the polynomial is in VNP.

Corollary 3.4. The polynomials Permn and NWn,m,d are in VNP.

As stated in Definition 3.2, the polynomial g(x1, . . . , xn, y1, . . . , ym) ∈ VP. However, a

subsequent paper of Valiant [Val82] showed that we may assume without loss of generality

that g ∈ VF, that is g is computable by a small formula. This is similar to the fact that

counting solutions of 3-CNF instance, which is a formula, is as hard as counting solutions of

any polynomial sized boolean circuit. We state this result here, and a proof may be found

in Bürgisser’s book [Bür00]. Malod and Portier [MP08] presented an alternate proof via

proof-trees which is perhaps more instructive.

Theorem 3.5. For any f(x1, . . . , xn) ∈ VNP, there is a g(x1, . . . , xn, y1, . . . , ym) that can be

computed by a poly(n) sized formula such that

f(x1, . . . , xn) =
∑

a∈{0,1}m
g(x1, . . . , xn, a1, . . . , am).

3.3 Reductions and completeness

For polynomials, the most natural form of reductions are via projections. We shall say that

a polynomial f reduces to g via projections if g may be obtained by substituting variables of

f to other variables or field constants. Under such reductions, do we have natural complete

polynomials for the classes VP and VNP? Valiant [Val79] showed that the Detn and Permn

are (almost) complete for the classes VP and VNP respectively. We shall see the proof of

this in this section.

Theorem 3.6 ([Val79]). If f is a polynomial computed by an ABP of size s, then f reduces

to Detn via projections for n = poly(s).

Theorem 3.7 ([Val79]). Over any field F of characteristic not equal to 2, the polynomial

Permn is complete for the class VNP under projections.

3.3.1 Warm-up: Formulas to permanents

Let us first show that any polynomial sized arithmetic formula can be expressed as permanent

of a small matrix. In fact, all matrices that we shall be building this way will have the

28

following structure, and this would be important. (Here *, * denote upper triangle entry of

the matrix of f , g respectively.)

f = Perm

1 0

0
1

1

∗
g = Perm

1 0

0
1

1

∗

Multiplication

1

0
1

1

∗

0

1
1

1

∗

1

1

Addition

1

1
1

1

∗

1

1
1

1

∗

1

1 1

1

1

29

We leave it to as an exercise to check that this indeed works. This may seem bizarre at

first but there is indeed a method to this. To understand that method, we must realise that

there is a graph theoretic way to understand Detn and Permn.

Graph theoretic representation of Detn and Permn

Let us think of an n×n symbolic matrix as an adjacency matrix of a directed graph G with

the edge from i to j having weight xij. Then every monomial of Detn or Permn corresponds

to a permutation σ, and the corresponding edges in the graph G form a cycle cover i.e., a

partition of the vertices of G into disjoint cycles. The weight of a cycle-cover shall be defined

as the product of weights of the edges constituting the cycles, and the sign of the cycle cover

shall be the sign of the permutation σ. This allows us to write Detn and Permn as

det(G) =
∑

C∈CycleCovers(G)

wt(C) · sign(C),

perm(G) =
∑

C∈CycleCovers(G)

wt(C).

3.3.2 ABPs reduce to Detn

We shall now show that for any f computable by an ABP, there is a matrix A each of

whose entries are either variables of constants such that det(A) = f . Since any ABP is a

projection of the polynomial IMMn,d, we shall show that we can construct a matrix A such

that det(A) = IMMn,d.

Consider the graph G underlying the ABP that corresponds to the polynomial IMMn,d.

Let s and t be the unique source and sink vertices respectively. Every path from s t

corresponds to a single monomial of IMMn,d of degree d. We shall now modify the graph

slightly such that each such s t path would map to a unique cycle cover:

To the graph G, add an edge with weight 1 from t to s.

Further, for all nodes except s and t, add a self-loop of weight 1.

Let A be the adjacency matrix of this new graph G′. The claim is that det(A) is ei-

ther IMMn,d or − IMMn,d. To see this observe that all cycle covers of G′ must consist of a

single s t path that loops back to s via the edge t → s that we added, and self-loops

30

on all excluded vertices. Further, since all s t paths in G were of the same length, it is

easy to check that all the cycle covers have the same sign. If the sign is negative, we can

change the weight of the t s edge to −1. Thus IMMn,d does indeed reduce to Detm for

m = poly(n). (Theorem 3.6)

Exercise 3.1 Look back at the construction in Subsection 3.3.1 to convince yourself that

the permanents are indeed f · g and f + g.

Proving the same for determinants requires handling signs. Modify the construction

appropriately for determinants.

Hint: Convert a formula to an ABP with the property that all s t paths have the

same length?

3.3.3 Detn can be computed by ABPs

A result that is often stated, but not proven explicitly, is the existence of a polynomial

sized circuit for Detn. This is often attributed by Berkowitz [Ber84]. In fact, Detn has a

polynomial sized ABP and this construction is due to Mahajan and Vinay [MV97] based

on clow sequences. The construction is really neat and we shall describe the ABP explicitly

here.

Detn =

∣∣∣∣∣∣∣∣
x11 . . . x1n

...
. . .

...

xn1 . . . xnn

∣∣∣∣∣∣∣∣
If the symbolic matrix on the RHS is the adjacency matrix of an n-vertex graph, then

the determinant is just the sum of weighted signed cycle-covers of the graph. A natural

approach to compute this via an ABP is to somehow compute each cycle cover on one path

of the ABP. Unfortunately, if one were to try the näıve approach of building a cycle cover

over many layers, to decide what our next vertex should be, we are forced to remember the

entire partial construction thus far. This ends up yielding an ABP with super-polynomial

width (the width intuitively corresponds to the memory required).

The key insight of Mahajan and Vinay was to relax the notion of cycle covers to something

weaker that can be built with less memory, to what they called clow sequences.

31

Definition 3.8 (Clow Sequences). Label the vertices of the graph as 1, . . . , n. A clow of

length ` is a closed walk on the graph G of length ` such as v1, . . . , v`, v1 such that v1 < vi

for all i = 2, . . . , `. We shall also refer to v1 as the head of the clow.

In other words, the head of a clow is the smallest vertex of the walk, and the head does

not repeat in a clow (although other vertices can).

A clow sequence is a sequence of clows (C1, . . . , Cr) that additionally satisfy head(C1) <

· · · < head(Cr).

The length of a clow sequence is the sum of the lengths of the clows that it comprises

of. The weight of a clow sequence is just the product of weights of the edges it comprises of.

Also, the sign of a clow sequence of length ` that comprises of r clows is (−1)`+r. ♦

Any cycle cover is, of course, a clow sequence. Further, the sign of the cycle cover matches

the above definition of the sign of a clow sequence. But there are many clow sequences that

visit some vertices multiple times, and hence are not cycle covers. However, Mahajan and

Vinay show that the sum of signed-weights of all clow sequences also yields the determinant.

Lemma 3.9 ([MV97]). If AG is the adjacency matrix of a graph G, then

det(AG) =
∑

C∈CycleCover(G)

wt(C) · sign(C) = det(AG)

=
∑

C∈ClowSequence(G)

wt(C) · sign(C).

They prove this by showing that the set of clow sequences that are not cycle covers can

be partitioned into pairs (C1, C2) such that wt(C1) = wt(C2) and sign(C1) = −sign(C2). We

shall see an explicit proof of this shortly, but first let us see why this yields an ABP.

The ABP consists of n+ 1 layers labelled as layer 1, . . . , n+ 1. Besides layer 1 and n+ 1,

every other layer ` consists of Θ(n2) nodes that we shall label as v
(`)
i,j for 1 ≤ i ≤ j ≤ n. It

is best to think of i as representing the head of the current clow, and j as the current vertex

in the clow. The length of the partial clow sequence constructed so far is captured by the

layer index `.

The first layer consists of a single vertex that we shall call s = v
(1)
1,1 (to maintain the same

notation) and the last layer consists of a single vertex that we shall call t. The edges between

layers, and the weights are defined as follows:

1. For each node v
(`)
i,j in layer ` ∈ [n], there is an edge to vertex v

(`+1)
i,k for every k > i.

The weight of this edge is xjk.

32

(This is like adding vertex k > i to our current clow by taking edge xjk. The head

continues to be i, and the current vertex is now k.)

2. For each node v
(`)
i,j in layer ` ∈ [n], there is an edge to vertex v

(`+1)
k,k for every k > i.

The weight of this edge is (−xji).

(This is like ending the current clow by taking edge xji back to the head, and starting

a new clow with head as k. Thus, the head of the current clow is k, and the current

vertex is also k. In this process, we increased the number of clows in the sequence by

1 and hence the weight being (−xji) accounts for the sign change as well.)

3. For the last layer, each node v
(n)
i,j has an edge to t with weight (−xji).

(This just corresponds to ending the last clow in our sequence.)

Summarizing this as a theorem, we have:

Theorem 3.10 ([MV97]). The polynomial Detn can be computed by an ABP of size O(n3)

over any field F. Thus, in particular, Detn can be computed by a arithmetic circuit of size

poly(n).

Proof of Lemma 3.9. Consider a clow sequence C = (C1, . . . , Cr) of length n, ordered so

that head(C1) < · · · < head(Cr). If C is not a cycle-cover, then some vertex must be repeated

in C. Starting from the last clow and proceeding backwards, let i be an index such that

(Ci+1, . . . , Cr) is a union of disjoint cycles but (Ci, . . . , Cr) is not, and let Ci = (v1, . . . , vk).

Let j be the first index that makes the vertex vj show that (Ci, . . . , Cr) not be a union of

disjoint cycles. Then, exactly one of the two situations must occur:

Case 1: vj = vj′ for some j′ < j,

Case 2: vj occurs in one of the cycles Ci+1, . . . , Cr.

In the first case, the vertices vj′+1, . . . , vj are all distinct since vj was the first occur-

rence of a repeated node. Define a new clow sequence C̃ obtained by decomposing the

clow Ci with two clows ((v1, . . . , vj′ , vj+1, . . . , vk), (vj′ , vj′+1, . . . , vj)). Note that the second

clow (vj′ , . . . , vj) is an honest-to-god cycle that does not intersect with any of the cycles

Ci+1, . . . , Cr. This transformation converts the clow sequence C with r clows to a clow

sequence C ′ of r + 1 clows and hence sign(C) = −sign(C ′).

33

In the second case, we have vj ∈ Ci also present in Ci′ for some i′ > i. Here we shall apply

the inverse operation of combining the clows Ci and C ′i at the vertex j. Formally, let us ro-

tate Ci′ cyclically so that Ci′ = (v′1, . . . , v
′
k) with v′1 = vj. The new clow sequence C ′ shall be

constructed by replacing the clows Ci and Ci′ by a new clow (v1, . . . , vj, v
′
2, . . . , v

′
k, vj+1, . . .).

Since every vertex in Ci′ is greater than head(Ci′) which is greater than head(Ci), this pro-

cess does indeed result in a valid clow. Once again, sign(C) = −sign(C ′) as the number of

clows in the sequence has reduced by exactly one.

head

1

2

7

5

4

8

3

9

6

(1, 2, 7, 5, 4, 3, 9, 6, 4, 8, 1)

head

1

2

7

5

4

8

4

head

3

9

6

(1, 2, 7, 5, 4, 8, 1), (3, 9, 6, 4, 3)

⇐⇒

It is not hard to see that the two operations in the two different cases are exact inverses

of each other. Thus, this establishes a matching among all clow sequences that are not cycle

covers, with every matched pair having opposing signs. Thus, the overall contribution of

clow sequences that are not cycle covers is zero.

3.3.4 Completeness of the permanent

The VNP completeness for the permanent is trickier, and uses a very clever gadget. The

proof described here is a modification of the proof in Bürgisser’s book [Bür00]. This is the

simplest proof that I am aware of currently.

Let f(x1, . . . , xn) =
∑

a g(x1, . . . , xn, a1, . . . , am) be in VNP with g(x,y) computable by

a formula of size s (Theorem 3.5). Like in the previous section, we can construct a graph

G (with weights being either scalars or variables in x or y) such that the sum of weighted

cycle covers is equal to g(x,y). The goal is to now compute
∑

a g(x, a).

Let us consider a simpler case, where there is a variable y ∈ y such that there is just

one edge in ey ∈ G with weight y. Can we transform the graph G locally to compute

34

g′ = g(y=0) + g(y=1)? Note that since y occurs only once in G, we have that g = y · g1 + g0

where g1 and g0 are independent of y. Thus, the polynomial g′ can be written as g1 + 2g0.

One way to compute this is to transform the graph G so that any cycle-cover of G that

includes the edge ey has the same weight as before, but every cycle-cover that does not

include the edge ey has its weight multiplied by 2. This can be achieved by splitting the

edge ey in the middle with a new vertex v with a self-loop of weight 2:

y

2

Clearly, any cycle-cover that uses the edge ey has the same weight, and all other cycle-

covers are forced to take the self-loop around the added vertex of weight 2. This allows us to

handle graphs G where every variable y ∈ y occurs only once in G. The complication arises

because there could be multiple edges that has the label y. We want a way by which we

can say that all cycle covers that choose any of the y-edges have the same weight, but cycle-

covers that do not pick any y-edge have weight multiplied by 2. The following is a gadget

that has similar properties, called rosette. The diagram below represents the 4-rosette.

The thick edges in the above picture shall be called connector edges (these shall play the

role of the y-edges). Note that the rosette has the following two properties:

1. For any non-empty subset S of the connector edges, there is exactly one cycle-cover of

the rosette that includes exactly the set S of the connector-edges.

2. There are exactly two cycle-covers of the rosette that do not include any connector

edge.

Thus, if we could somehow “glue” the connector edges with our y-edges, we would be done.

This is achieved by yet another gadget that we shall call the glue gadget. The following is the

35

description of the glue gadget that glues edges (u, v) and (u′, v′) by adding three additional

vertices.

u v

u′ v′

p1 p2

p3

−1/2

1/2 −1/2

−1 1

The adjacency matrix between the nodes p1, p2 and p3 is

A =

 −1 1 1/2

1 1 −1/2

1 1 −1/2

 .

Claim 3.11. Let (u, v) and (u′, v′) be two edges of a graph G, and let G′ be the graph with the

glue gadget between them as described above. Then perm(G′) equals the sum of all weighted

cycle covers of G that either include both (u, v) and (u′, v′) in it or neither.

Proof. If both edges (u, v) and (u′, v′) are taken in the cycle cover, this is realized in G′ as

(. . . u, p1, p2, v . . .)(. . . u
′, p3, v

′ . . .), which has the same weight.

If neither of the edges (u, v) and (u′, v′) are taken in the cycle cover, then the total

contribution of all cycle covers of p1, p2 and p3 is perm(A) = 1.

If the edge (u, v) is taken but (u′, v′) is not, then the edge (u, v) can be realized in G′ as

either {(. . . u, p1, p2, v . . .)(p3)} or {(. . . u, p1, p3, p2, v . . .)}. The total contribution is therefore

zero.

Similarly, if the edge (u′, v′) is taken but not (u, v), then this can be realized in G′

as {(. . . u′, p3, v
′ . . .), (p1, p2)} and {(. . . u′, p3, v

′ . . .)(p1)(p2)}. Again, the net contribution is

zero.

Now with these two gadgets, we are done. For every variable yi ∈ y, let ei,1, . . . , ei,ri be

the edges labelled with y. Let Ri be a ri-rosette disjoint from the graph G The graph G′ is

built as follows:

36

Take a disjoint union of G with one ri-rosette for each i = 1, . . . ,m.

Glue each edge labelled with yi with the ri connector edges in the ri-rosette.

It should be easy to see that perm(G) =
∑

a g(x, a). This completes the proof of the

VNP-completeness of Permn. (Theorem 3.7)

Note that we needed to divide by 2 in the glue gadget. This is why we require the

characteristic of the field to be different from two for the above proof to work.

Exercise 3.2 For any matrix A, we shall use the notation that A[1|2] refers to the

submatrix obtained by removing row 1 and column 2.

Show that, for a three-vertex glue gadget, it suffices to find a 3 × 3 matrix A that

satisfies the following three properties:

• perm(A) = perm(A[2, 3|1, 3]) = 1.

• perm(A[3|3]) = perm(A[2|1]) = perm(A[1|3]) = perm(A[2|3]) = 0.

Come up with an alternate construction of a matrix A as a glue gadget. Also prove

that any such construction must involve entries of A with its denominator divisible by

2, and show that replacing perm by det above would yield no solution.

37

Chapter 4

Some estimates for binomial

coefficients

Throughout this article, we would be seeing several binomial coefficients. The following

estimates would allow us to get a better handle on the growth of such terms.

We shall use log to refer to log2 and ln to refer to the natural logarithm.

Definition 4.1 (Entropy function). The binary entropy function H2 : [0, 1]→ [0, 1] is defined

as

H2(p) = −p log2(p) − (1− p) log2(1− p).

The entropy function with respect to the natural logarithm is refer to as H and

H(p) = −p ln(p) − (1− p) ln(1− p).

♦

Proposition 4.2. For any 0 < p < 1, we have p ln 1
p
≤ H(p) ≤ p ln 1

p
+ p.

Proposition 4.3 (Stirling’s Approximation).

lim
n→∞

n!(
n
e

)n√
2πn

= 1.

Proposition 4.4. For any n ≥ k ≥ 0,(n
k

)k
≤

(
n

k

)
≤

(ne
k

)k
.

38

Proposition 4.5. For any constants α, β,

log

(
αn

βn

)
= H2

(
β

α

)
· αn−O(log n).

In particular, if β = α/2, then
(
αn
βn

)
= 2αn/ poly(n).

For the more recent lower bounds, we would encounter several delicate ratios of binomial

coefficients. The following lemma would help us simplify several such expressions and get a

better handle on the growth.

Lemma 4.6. [GKKS14, Lemma 6] For any a, b = O(
√
n), then

(n+ a)!

(n− b)!
= na+b · poly(n).

We shall be using the above lemma very often in the lower bounds. One particular

instantiation that shall also appear frequently shall be the following lemma.

Lemma 4.7. Let n and ` be parameters such that ` = n
2
(1− ε) for some ε = o(1). For any

a, b such that a, b = O(
√
n),(

n− a
`− b

)
=

(
n

`

)
· 2−a · (1 + ε)a−2b · exp(O(b · ε2)).

Proof. The proof of the above lemma would repeated use Lemma 4.6.(
n−a
`−b

)(
n
`

) =
(n− a)!

n!
· `!

(`− b)!
· (n− `)!

(n− `− a+ b)!

poly
≈ 1

na
· `b · (n− `)a

(n− `)b

=

(
n
2

)a
(1 + ε)a

na
· (1− ε)b

(1 + ε)b

= 2−a · (1 + ε)a−2b · exp(O(b · ε2)).

39

Chapter 5

Structural Results

This chapter shall be devoted to looking at some structural results on arithmetic circuits.

This would help us understand the relevance of shallow circuits in the context of proving

lower bounds for arithmetic circuits of arbitrary depth.

5.1 Homogenization

Suppose we have an n-variate degree d polynomial computed by an arithmetic circuit C.

How large can the degree of intermediate computations be? Potentially, intermediate com-

putations can involve very high degree terms which somehow cancel each other at the root.

However, the following lemma of Strassen shows that we may assume without much loss

of generality that arithmetic circuits never compute polynomials of degree more than the

output.

Definition 5.1 (Homogeneous circuits). A circuit C is said to be homogeneous if every gate

in the circuit computes a homogeneous polynomial. ♦

Lemma 5.2 (Homogenization). Let f be an n-variate degree d polynomial computed by a

circuit C of size s. Then, for every 0 ≤ i ≤ d, there is a homogeneous arithmetic circuit C ′i,

of size at most O(sd2), that computes the degree i homogeneous polynomial in f (the sum of

all degree i monomials in f).

Proof. Assume without loss of generality that the circuit C has all gates with fan-in at most

2. For every gate g ∈ C, define (d+1) gates g(0), . . . , g(d); we shall construct a new circuit C ′

such that g(i) computes the degree i homogeneous component of the polynomial computed

at g. If g has children h1 and h2, then C ′ would have the following connections depending

40

on the type of the gate g:

g = h1 + h2 =⇒ g(i) = h
(i)
1 + h

(i)
2 for all i

g = h1 × h2 =⇒ g(i) =
i∑

j=0

h
(j)
1 h

(i−j)
2 for all i

It is easy to check that the size of the circuit C ′ is at most O(sd2), and computes all the

homogeneous components of f .

Thus, for arithmetic circuits, we can assume without much loss of generality that we are

working with a homogeneous circuit.

Remark. For the class of arithmetic formulas, it is not clear if we can homogeneous without

loss of generality. If we were to apply the above lemma to an arbitrary arithmetic formula,

the resulting object is a homogeneous circuit and not a formula. It is unclear if any formula

can be homogenized without loss of generality. The same is the case even for circuits of a

fixed depth, as the above construction doubles the depth of the circuit.

However, the class of ABPs can also be assumed to be homogeneous without loss of

generality. We leave this as an exercise. ♦

Exercise 5.1 Prove a similar homogenization lemma for algebraic branching programs.

5.2 Interpolation

A very useful technique in arithmetic complexity is interpolation. Suppose we have a circuit

C that computes a polynomial P (x1, . . . , xn, y) and say degy P = d. We can interpret the

polynomial P as an element of (F[x])[y], that is we can think of P as a univariate polynomial

in y with coefficients being elements of F[x].

P (x1, . . . , xn, y) = P0(x1, . . . , xn) + P1(x1, . . . , xn)y + · · ·+ Pd(x1, . . . , xn)yd

Given that we can compute P by a circuit C, can we also compute one of the coefficients

Pi(x1, . . . , xn) by a small circuit? The answer is ‘Yes’ as long as we are working over a large

enough field.

Lemma 5.3 (Interpolation). Let P (x1, . . . , xn, y) be a polynomial with degy P ≤ d. For any

set of distinct scalars α0, . . . , αd ∈ F and for every i ∈ {0, . . . , d}, each of the coefficient

41

polynomials Pi(x1, . . . , xn) defined above can be expressed as a linear combination of

{P (x1, . . . , xn, α0), . . . , P (x1, . . . , xn, αd)} .

Thus in particular, if P is computed by a size s circuit, then each Pi is computable by a size

s(d+ 1) circuit. Furthermore, if P is computable by a size s circuit from some class C, then

each Pi is computable by a size s(d+ 1) circuit from the class ΣC (which are circuits with a

+ gate as a root with C-circuits as its children).

Proof. For this proof we shall use P (αi) as a short-hand for P (x1, . . . , xn, αi). Then we have

the following matrix identity
1 α0 · · · αd0

1 α1 · · · αd1
...

...
. . .

...

1 αd · · · αdd



P0

P1

...

Pd

 =


P (α0)

P (α1)
...

P (αd)


Observe that the matrix on the left is a Vandermonde matrix, and hence is invertible. This

implies that there is some matrix ((βij)), its inverse, such that
P0

P1

...

Pd

 =


β00 β01 · · · β0d

β10 β11 · · · β1d

...
...

. . .
...

βd0 βd1 · · · βdd



P (α0)

P (α1)
...

P (αd)


In particular, for each i ∈ {0, . . . , d},

Pi(x1, . . . , xn) = β0P (x1, . . . , xn, α0) + · · ·+ βdP (x1, . . . , xn, αd).

The size bounds and structure claimed is clear from the above expression.

The use of interpolation is one of the most important methods when dealing with arith-

metic circuits. We would many applications of it later in this article. We just give a couple

of concrete applications for now. The first is the computation of partial derivatives in a

single variable. We leave this as an easy exercise.

42

Exercise 5.2 [Computing partial derivatives] Suppose P (x1, . . . , xn, y) be a polynomial

computed by a size s circuit with degy P ≤ d. Show that for any i, the partial derivative
∂iP
∂yi

can be computed by a circuit of size at most s(d+ 1).

What about computing mixed partials such as ∂nP
∂x1···∂xn?

Another important application is the task of computing homogeneous components.

5.2.1 Computing homogeneous components

Suppose we have a size s circuit C that is computing a polynomial P of degree d. We have

already seen in Lemma 5.2 that we can construct each of the homogeneous components of P

by a circuit C ′ of size at most sd2. Unfortunately, the construction described in Section 5.1

results in a circuit C ′ even if we started off with a formula computing P . Furthermore, if

P was computable by a constant depth circuit, the construction results in an non-constant

depth circuit. However, the construction in Lemma 5.2 not just computes the homogeneous

components of P but it computes them via a homogeneous circuit. If the goal is to just

compute the homogeneous components (by a possibly non-homogeneous circuit), one can

use interpolation. Furthermore, this method would preserve constant depth as well.

Let us use Homi(P) to denote the homogeneous part of degree i, and let d = deg(P).

P (x1, . . . , xn) = Hom0(P) + · · ·+ Homd(P)

Let y be a new variable and consider the polynomial P ′(x1, . . . , xn, y) := P (yx1, . . . , yxn).

Then observe that

P ′(x1, . . . , xn) = Hom0(P) + yHom1(P) + · · ·+ yd Homd(P).

In other words, each homogeneous component of P is a coefficient of some yi of P ′(x1, . . . , xn, y).

Thus, Lemma 5.3 tells us that we can use a linear combination of evaluations of P ′ to compute

these coefficients.

We summarize this as a lemma.

Lemma 5.4 (Homogeneous component computations). Let P (x1, . . . , xn) be a polynomial

with degP = d. For any set of distinct scalars α0, . . . , αd ∈ F and for every i ∈ {0, . . . , d},
each of the homogeneous components Homi(P) defined above can be expressed as a linear

43

combination of

{P (α0x1, . . . , α0xn), . . . , P (αdx1, . . . , αdxn)} .

Thus in particular, if P is computed by a size s circuit, then each Homi(P) is computable by

a size s(d + 1) circuit. Furthermore, if P is computable by a size s circuit from some class

C, then each Homi(P) is computable by a size s(d+ 1) circuit from the class ΣC (which are

circuits with a + gate as a root with C-circuits as its children).

It is important to note that for interpolation, we need to be able to find sufficiently many

distinct elements in the base field, and this is possible only if the base field is large enough.

Exercise 5.3 Assume the underlying field is large enough. Find a polynomial sized con-

stant depth circuit that computes Symd, the elementary symmetric polynomial of degree

d, defined as

Symd(x1, . . . , xn) =
∑

1≤i1<i2<···<id≤n

xi1 · · ·xid .

Exercise 5.4 Assume the underlying field is large enough. Find a polynomial sized con-

stant depth circuit that computes complete homogeneous symmetric polynomial defined

as

σd(x1, . . . , xn) =
∑

m∈{deg. d monomials}

m.

For example, σ2(x1, x2, x3) = x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x1x3.

5.3 Depth reduction

The phenomenon of simulating an arbitrary arithmetic circuit by a shallow arithmetic cir-

cuit is called depth reduction. Arithmetic circuits exhibit some remarkable depth reduction

results, and we shall go over these in this section.

44

5.3.1 Depth reduction for arithmetic formulas

The depth reduction for formulas is quite easy to describe. This would also serve as step

towards understanding the depth reduction for arithmetic circuits. The following depth

reduction is due to Brent [Bre74].

Lemma 5.5 ([Bre74]). Let f be an n-variate degree d polynomial computed by an arithmetic

formula Φ of size s. Then, f can also be computed by a formula Φ′ of size s′ = poly(s, n, d)

and depth O(log s).

Proof. Assume without loss of generality that Φ is a formula of fan-in 2. Starting from the

root, walk down to the leaves by always taking the child with a larger sub-tree under it.

Consider the first node in this path v such that the size of the formula rooted at v is smaller

than 2s
3

. Let Φv refer to the sub-formula rooted at v. By the choice of the path from the

root, we have

s

3
≤ |Φv| <

2s

3
.

Let Φ̂v denote the formula where the sub-formula at v is replaced by a fresh variable y. Since

we are dealing with formulas, Φ̂v is a linear polynomial in the variable y. Hence,

Φ̂v(y) = A · y + B

and, Φ = A · Φv + B

for some polynomials A and B. But we can compute both A and B from Φ̂v(y) as

A = Φ̂v(1)− Φ̂v(0)

B = Φ̂v(0)

Thus,

f = (Φ̂v(1)− Φ̂v(0)) · Φv + Φ̂v(0)

All the formulas (i.e. Φ̂v(1), Φ̂v(0), and Φv) in the above equation have size at most 2s
3

.

Thus, by recursively applying this process on each of these sub-formulas, we obtain

Depth(s) = Depth(2s/3) + 3

45

f

−→

f

+

×

0

+

−1

1 0

Figure 5.1: Depth reduction for formulas

=⇒ Depth(s) = O(log s)

Size(s) ≤ 4 · Size(2s/3) + O(1)

=⇒ Size(s) = poly(s).

5.3.2 Depth reduction for arithmetic circuits

The key point in the above depth reduction was that for any node v, the formulas Φv and

Φ̂v(y) were disjoint. This however is not the case for general arithmetic circuits. Thus, it

is not clear if we can find a node in the circuit such that the subcircuit under it has size

between s/3 and 2s/3. However, we do not really need to make the subcircuits have size

drop by a constant factor, but any parameter dropping by a constant factor would be fine.

One parameter that we could work with instead is the degree.

Applying Brent’s reduction with degree

By Lemma 5.2, we may assume that we have a homogeneous circuit Φ if size s computing a

homogeneous n-variate polynomial f of degree d. Using a similar argument as in the proof

of Lemma 5.5, we can find a node v ∈ Φ such that d
3
< deg(v) ≤ 2d

3
. However, we cannot

quite write f as A ·Φv +B as we are now dealing with a circuit and there could be multiple

paths from the root leading to v.

46

Consider the set of all nodes of such intermediate degree as F :

F =

{
v ∈ Φ :

d

3
< deg(v) ≤ 2d

3

}
Instead of expressing f using a single v ∈ F as in Lemma 5.5, we shall express f as a function

of all nodes in F .

Claim 5.6. If F = {v1, . . . , vs}, then f may be written as

f =
∑
i,j

Aij · ΦviΦvj +
∑
i

Bi · Φvi (5.7)

where deg(Aij), deg(Bi) ≤ 2d
3

for all i, j. Moreover, each Aij and Bi’s may be computed by

an arithmetic circuit of size at most O(s).

Proof. From the circuit Φ, construct the circuit Φ′ that is obtained by removing the incoming

edges of every vi ∈ F thereby making these nodes as leaves as well. Then, Φ′ computes a

polynomial f ′(x1, . . . xn, v1, . . . , vs) satisfying

f = f ′(x1, . . . , xn,Φv1 , . . . ,Φvs).

Because of the degree of each vi, we easily obtain that the degree of f ′ in the vi variables must

be at most 2, and each coefficient Aij or Bi cannot have degree more than 2d/3. Further,

obtaining the Aij’s and Bi’s from Φ′ is a simple exercise.

Since every polynomial appearing in (5.7) is computable by size at most poly(s) and has

degree at most 2d/3, we may apply induction as earlier. Thus,

Depth(d) = Depth(2d/3) + 2

=⇒ Depth(d) = O(log d)

Unfortunately, the size of the resulting circuit could be as large as sO(log d). This reduction

is along the lines of Hyafil [Hya79].

Notice that in this reduction, the final circuit we obtain is in fact an arithmetic formula

of size sO(log d) and depth O(log d) (assuming that addition gates can have unbounded fan-in;

with bounded fan-in addition gates, the depth would be O(log d · log s)). Valiant, Skyum

Berkowitz and Rackoff [VSBR83] showed that we can attain a similar depth reduction to

O(log d) depth while keeping the size polynomial.

47

Depth reduction of [VSBR83]

This section shall be devoted to the proof of the remarkable theorem of Valiant, Skyum,

Berkowitz and Rackoff.1

Theorem 5.8 ([VSBR83, AJMV98]). Let f be an n-variate degree d polynomial computed

by an arithmetic circuit Φ of size s. Then there is an arithmetic circuit Φ′ computing f and

has size s′ = poly(s, n, d) and depth O(log d).

We may assume without loss of generality that Φ is a homogeneous circuit. We will also

assume that all multiplication gates in Φ have fan-in at most 2, and that the degree of the

right child of any multiplication gate is at least as large as the degree of the its left child.

Such circuits are known to as right heavy circuits. For any gate u in Φ, we denote by [u] the

polynomial computed at gate u. It will also denote a gate label in the new depth reduced

circuit.

We need the following definition of gate quotients.

Definition 5.9. For any pair of gates u, v, the polynomial [u : v] is defined as follows:

1. If u and v are the same nodes, then [u : v] = 1.

2. If u is a leaf, and u 6= v, then [u : v] = 0.

3. If u = u1 + u2, then [u : v] = [u1 : v] + [u2 : v].

4. If u = u1 × u2, then [u : v] = [u1] · [u2 : v]. ♦

It is easy to see that [u : v] is a homogeneous polynomial of degree deg(u)− deg(v).

Some Intuition

For an arithmetic formula Φ with u as root, and any other node v, we can write Φ = [u] as

A · [v] + B for some polynomials A and B. We would like to denote [u : v] to denote the

quotient A. In a circuit things get complicated due to multiple paths from the u to v.

A minimal computation in a circuit is formalized by the notion of a proof-tree. A proof-

tree is a sub-circuit T such that, 1. the root is in T . 2. if a multiplication gate v is in T ,

then so are both its children. And, 3. if an addition gate v is in T , then exactly one child

of v is also in T .

1The proof described here follows the structure of a subsequent result [AJMV98], and not the original
proof, although both proofs are quite similar.

48

Every proof-tree computes a monomial, and the polynomial computed by the circuit is

just the sum over all proof-trees. The technical issue in defining the gate quotient stems

from the fact that a node v could occur multiple times in a proof-tree, and the number

of occurrences could also vary with different proof-trees. To consistently define the gate

quotient, we need to be careful which of these v’s we are referring to. We do this by defining

the right-most path in the proof-tree as a canonical path, and replacing the unique occurrence

of v on this canonical path by a leaf labelled 1 (and if v does not occur on this path, then

this proof-tree does not contribute to [u : v]). In fact, it can be seen that Definition 5.9

is precisely this notion although stated algebraically, and this was the perspective used in

[AJMV98]. Although it provides more intuition, we will not use the notion of proof-trees

any further to prove Theorem 5.8.

A possible alternate definition is to interpret u as a polynomial in v, and take the first-

order partial derivative (as described in [SY10]). In the case when deg(v) > deg(u)/2, this

notion coincides with the above definition of [u : v] (as v cannot occur more than once in

any proof-tree). However, some of key properties (especially Lemma 5.12 that we shall soon

see) are not true in this setting unless similar degree restrictions are placed on the pair of

nodes. While we could reprove Theorem 5.8 in this way, we need to be careful about these

degree restrictions.

This proof described here can be thought of as a hybrid of [VSBR83] and [AJMV98]. The

circuit is built top-down along the lines of [AJMV98] but using the language of [VSBR83].

Definition 5.10 (Frontier). For any parameter m, define the frontier at degree m as

Fm = {v : deg(v) ≥ m , deg(vL), deg(vR) < m}

That is, Fm are the deepest nodes in the circuit that have degree at least m. ♦

Note that from the above definition, all frontier nodes are multiplication gates (since we

are working with a homogeneous circuit). Also, a frontier forms a maximal anti-chain.

Observation 5.11. If a node v does not occur in the sub-circuit rooted at u, then [u : v] = 0.

In particular, if u, v ∈ Fm for some m, and u 6= v, then [u : v] = 0.

The following is the key lemma for the depth reduction.

Lemma 5.12. Suppose Φ is a homogeneous, right-heavy circuit. Let m be a parameter such

49

that deg(u) ≥ m. Then,

[u] =
∑
w∈Fm

[u : w] · [w] (5.13)

Also, if u, v are nodes such that deg(u) ≥ m > deg(v), then

[u : v] =
∑
w∈Fm

[u : w][w : v] (5.14)

Proof. The proof would be by induction on the depth of u.

1. The base case would be when deg(u) ≥ m but all its children have degree less than m,

that is u ∈ Fm. Such a node u has to be a × gate. Hence,∑
w∈Fm

[u : w] · [w] = [u : u] · [u] +
∑
w∈Fm
w 6=u

[u : w] · [w] = [u] + 0

and∑
w∈Fm

[u : w] · [w : v] = [u : u] · [u : v] +
∑
w∈Fm
w 6=u

[u : w] · [w : v] = [u : v] + 0

as [u : w] = 0 by Observation 5.11.

2. If u = u1 + u2,

[u] = [u1] + [u2]

=
∑
w∈Fm

([u1 : w] · [w] + [u2 : w] · [w]) (inductive hypothesis)

=
∑
w∈Fm

[u : w] · [w] (Definition 5.9.3)

and

[u : v] = [u1 : v] + [u2 : v]

=
∑
w∈Fm

([u1 : w] · [w : v] + [u2 : w] · [w : v]) (inductive hypothesis)

50

=
∑
w∈Fm

[u : w] · [w : v] (Definition 5.9.3)

3. If u = u1 × u2 with deg(u2) ≥ m,

[u] = [u1] · [u2]

= [u1] ·

(∑
w∈Fm

[u2 : w] · [w]

)
(inductive hypothesis)

=
∑
w∈Fm

([u1] · [u2 : w]) · [w] =
∑
w∈Fm

[u : w] · [w] (Definition 5.9.4)

[u : v] = [u1] · [u2 : v]

= [u1] ·

(∑
w∈Fm

[u2 : w] · [w : v]

)
(inductive hypothesis)

=
∑
w∈Fm

([u1] · [u2 : w]) · [w : v] =
∑
w∈Fm

[u : w] · [w : v] (Definition 5.9.4)

Now we are ready to write down the depth reduced circuit. As mentioned earlier, the

original proof of [VSBR83] follows a bottom-up approach, but it would be more useful to us

to take a top-down approach (as in [AJMV98]) to obtain some additional structural proper-

ties that we would require.

Theorem 5.15 (Theorem 5.8 restated). Let Φ be a homogeneous, right-heavy circuit of size

s computing an n-variate degree d polynomial. Then, there is a circuit Φ′ of size poly(s)

with the following properties:

1. For every pair of nodes u, v ∈ Φ, there are nodes in Φ′ computing [u] and [u : v].

2. For every multiplication gate in Φ′, all its children have at most half its degree.

Proof. We shall recursively compute each node [u] and [u : v] from nodes of lower degree.

For any node u ∈ Φ, let F(u) = Fm, where m = deg(u)/2. Thus by (5.13),

[u] =
∑

w∈F(u)

[u : w] · [w]

51

=
∑

w∈F(u)

[u : w] · [wL] · [wR]

By our choice of m, all the terms on the RHS have degree at most deg(u)/2. Also, [u] is an

addition gate with fan-in s and the multiplication gates feeding into it have fan-in 3.

For any pair of nodes u, v ∈ Φ, let F(u, v) = Fm, where m = (deg(u)+deg(v))/2. By (5.14),

[u : v] =
∑

w∈F(u,v)

[u : w] · [w : v]

=
∑

w∈F(u,v)

[u : w] · [wL] · [wR : v]

Again by the choice of m, the degree of [u : w] and the degree of [wR : v] is at most

(deg(u) − deg(v))/2. The degree of [wL] however could be as large as deg(u) − deg(v).

Nevertheless, we can use the above expansion once more to write it as

[u : v] =
∑

w∈F(u,v)

[u : w] · [wL] · [wR : v]

=
∑

w∈F(u,v)

[u : w]

 ∑
p∈F(wL)

[wL : p] · [pL] · [pR]

 · [wR : v]

=
∑

w∈F(u,v)

∑
p∈F(wL)

[u : w] · [wL : p] · [pL] · [pR] · [wR : v]

Now all the terms on the RHS have degree at most (deg(u) − deg(v))/2 as required. Also,

[u : v] is an addition gate with fan-in s2 and the multiplication gates feeding into it have

fan-in 5.

Eventually we shall reach a case where deg(u) ≤ 1 or deg([u : v]) ≤ 1. These are just

linear polynomials over n variables and shall be explicitly computed in Φ′.

Starting with the output gate, it is clear how these steps can be used to build a depth

reduced circuit in a top-down fashion.

Observe that the proof also shows that all addition gates in Φ′ have fan-in at most s2

and all multiplication gates have fan-in at most 5. This completes the list of properties we

seek from the depth reduced circuit.

52

5.3.3 Reduction to depth four circuits

One of the consequence of a depth reduction such as Theorem 5.8 is that proving lower

bounds for general circuits is reduced to the task of proving lower bounds for O(log d) depth

circuits.

Corollary 5.16. If f is an n-variate degree d polynomial that requires super-polynomial (in

n and d) size circuits of O(log d) depth to compute it, then any general arithmetic circuit

computing f must also be of super-polynomial size.

But, optimistically, we would expect that the right lower bound must be truly expo-

nential, and not merely super-polynomial. Keeping that in mind, a depth reduction even

with a slightly super-polynomial blow-up might be useful in this regard. This line was first

pursued by Agrawal and Vinay [AV08], and the result was subsequently strengthened by

Koiran [Koi12] and Tavenas [Tav15].

Theorem 5.17 ([AV08, Koi12, Tav15]). Let f be an n-variate degree d polynomial computed

by a size s arithmetic circuit. Then for any 0 < t ≤ d, f can be equivalently computed by a

homogeneous ΣΠΣΠ[t] circuit of top fan-in sO(d/t) and size sO(t+d/t).

If we were to optimize the size of the final depth four circuit, then we should choose

t =
√
d to get a ΣΠΣΠ[t] circuit of size sO(

√
d). Note that this implies that if we could prove

a lower bound of nω(
√
d) for such ΣΠΣΠ[

√
d] circuits, then we would have proved a lower

bound for general circuits! In fact, in the recent past, we have come pretty close to the

required threshold and we shall see them in the later chapters.

In this section, we shall see a proof of Theorem 5.17 but this is not the original proof of

Tavenas [Tav15]. We shall see an alternate proof by [SV14], which I find more insightful.

Proof of Theorem 5.17. Let C be the O(log d) depth circuit computing f obtained from

Theorem 5.8 applied on the size s circuit computing f . Let s′ be the size of C. If g

is a polynomial computed at any intermediate node of C, then from the structure of C

(Theorem 5.15) we have a homogeneous expression

g =
s′∑
i=1

gi1 · gi2 · gi3 · gi4 · gi5 (5.18)

where each gij is computed by a node in C as well, and deg(gij) ≤ deg(g)/2. If we look at

53

(5.18) for f , then the RHS is a ΣΠΣΠ[d/2] circuit of top fan-in s′ computing f . To obtain a

ΣΠΣΠ[t] circuit eventually, we shall do the following natural process.

For each summand gi1 . . . gir in the RHS, if the largest degree gij has degree more

than t, expand that gij in-place using (5.18).

Repeat this process until all gij’s on the RHS have degree at most t.

Note that in each iteration of the above procedure, we increase the top fan-in by a mul-

tiplicative factor of s′, and what we gain is that some the terms in the RHS would now

have smaller degrees. If we could show that the in O(d/t) iterations all terms on the RHS

have degree at most t, then we would have obtained an ΣΠΣΠ[t] circuit of top fanin s′O(d/t)

computing f .

To bound the number of iterations, let us count the number of terms of degree more than

t/8 in each term. Note that since we would always maintain homogeneity, the number of

terms of degree t/8 or more in any summand is at most 8d/t. Thus, it suffices to show that

each iteration increases the number of terms of degree t/8 by at least one.

Note that in (5.18), if deg(g) = d′ then the largest degree term of any summand on

the RHS is at least d′/5 (since the sum of the degrees of the five terms must add up to

d′). Also, the largest degree term can have degree at most d′/2. Hence there must be at

least d′/2 degree contributed by the other four factors in each term. This implies that the

second largest factor in each summand has degree at least d′/8. Therefore, as long as we are

expanding factors using (5.18) of degree more than t/8, we are guaranteed that each new

term has at least one more factor of degree more than t/8. As argued earlier, we can never

have more than 8d/t such terms in any summand and this bounds the number of iterations

by 8d/t.

Thus, when the above procedure stops, we have an ΣΠΣΠ[t] circuit of top fan-in s′O(8d/t) =

sO(d/t). Observing that any polynomial of degree t can have at most nt monomials, we get

that the size of the circuit overall is at most sO(t+d/t).

Thus, proving a “good enough” top fanin (or size) lower bound for the class of ΣΠΣΠ[t]

circuit would suffice for proving lower bounds for general circuits. We would be using this

fact quite a lot so we state this explicitly as a corollary.

Corollary 5.19. If f is an n-variate degree d polynomial that requires homogeneous ΣΠΣΠ[t]

circuits of top fan-in nω(d/t) to compute it, then f requires general arithmetic circuits of size

nω(1) to compute it.

54

Exercise 5.5 Define the product-depth of any circuit to be the maximum number of

multiplication gates encountered on any root-to-leaf path.

Show that for any polynomial n-variate degree d polynomial f that can be computed

by a size s arithmetic circuit, there is a circuit Φ′ of size sO(d1/∆) and product depth ∆

computing f .

Reduction to depth three

There have been some further depth reductions results.

Theorem 5.20 ([GKKS16]). If f is an n-variate degree d polynomial in Q[x] that can be

computed by an arithmetic circuit of size s, then it can be equivalently computed by a depth

three circuit of size sO(
√
d).

We shall defer this theorem to later in the interest of presenting more insight and intuition.

They would be better placed after we have seen a few of the recent lower bounds for restricted

depth four circuits (but those who are impatient can find it in Section 23.2). We now proceed

to see some lower bounds.

5.3.4 Depth reduction for formulas, again

In this section we shall revisit Theorem 5.17 when it is applied to formulas. Do the resulting

depth four circuits have any additional structure when we start from a homogeneous formula?

The alternate proof of Saptharishi and Vinay [SV14] provides some insight into this.

We would need the following lemma that was present in the survey of Shpilka and Yehu-

dayoff [SY10] and also in the result of Hrubeš and Yehudayoff [HY11] that we shall see a

proof of in Chapter 13 as Lemma 13.3 and Lemma 13.4.

Lemma 5.21 (Lemma 13.4 stated without proof). Let Φ be a homogeneous formula of size s

computing a polynomial p of degree d. Then p can be written as a sum of (s+ 1) log-product

polynomials, that is,

p = f1 + · · ·+ fr with r ≤ s+ 1 (5.22)

where for each i ∈ [r], we have fi = fi1 · · · fi` satisfying

• each fij is homogeneous, and
∑

j deg(fij) = d,

55

• (1/3)j · d ≤ deg(fij) ≤ (2/3)j · d,

• fi` = 1.

In particular, each fi factors into Ω(log d) non-trivial factors of geometrically decreasing

degrees.

Furthermore, if Φ was a multilinear formula to begin with, then so is the expression

on the RHS. And if Φ was set-multilinear, then so is the expression on the RHS. In other

words, it says that a homogeneous formula has a homogeneous depth-4 formula of the form

Σ[s+1]Π[log d]ΣΠ[2d/3]. We can now describe the mild extension of Theorem 5.17 applied for

homogeneous formulas.

Theorem 5.23 (Theorem 5.17 for homogeneous formulas). Let f be a homogeneous n-variate

degree d polynomial computed by a size s homogeneous formula. Then for any 0 < t ≤ d,

f can be equivalently computed by a homogeneous ΣΠ[a]ΣΠ[t] formula of top fan-in s10(d/t)

where

a ≥ 1

10

(
d

t

)
log t.

What this means is that even though the degree of all polynomials computed by the

bottom two levels of the ΣΠΣΠ circuit have degree bounded by t, each summand is a

product of much more than d/t factors. Another way to view this is that Theorem 5.17 gives

a ΣΠΣΠ circuit of size sO(d/t) where the maximum bottom degree and average bottom degree

are both bounded by O(t). Whereas in the above theorem we have maximum bottom degree

bounded by t but average bottom degree bounded by (t/ log t).

Proof. The proof is exactly along the lines of Theorem 5.17 but instead of using the 5-product

expression in (5.18), we shall use the log-product expression of (5.22). The key point again

is that in every such summand, there are two factors of degree at least d/9. Therefore, the

proof of Theorem 5.17 proceeds verbatim and the number of iterations is bounded by 9(d/t).

This gives the ΣΠΣΠ[t] formula of size at most (s + 1)9(d/t) ≤ s10(d/t). The only thing left

to check is that we do indeed have Ω((d log t)/t) non-trivial factors in each summand. We

leave this as an exercise with a hint.

Exercise 5.6 Complete the proof of Theorem 5.23 by showing that the number of non-

trivial factors in any summand of the resulting ΣΠΣΠ[t] circuit has Ω((d log t)/t) non-

56

trivial factors.

Hint: Show that in (5.22), in any summand, if we only consider the factors of degree

at most t, the sum of their degrees is at most 2t. Use that to say each term must involve

Ω(d/t) expansions via (5.22) thus yielding Ω((d log t)/t) factors.

This additional structure may be useful in the quest for proving homogeneous formula

lower bounds but at the moment it seems unclear. We shall however see one application of

this additional structure later in Chapter 16.

57

Part II

Classical lower bounds

58

Chapter 6

Lower bounds for general circuits and

formulas

Despite several attempts by various researchers to prove lower bounds for arithmetic circuits

or formulas, we only have very mild lower bounds for general circuits or formulas thus far. In

this chapter, we shall look at the two modest lower bounds for general circuits and formulas.

6.1 Lower bounds for general circuits

The only super-linear lower bound we currently know for general arithmetic circuits is the

following result of Baur and Strassen [BS83].

Theorem 6.1 ([BS83]). Any fan-in 2 circuit that computes the polynomial f = xd+1
1 + · · ·+

xd+1
n has Ω(n log d) edges.

6.1.1 An exploitable weakness

Without loss of generality, let us assume that the circuit is a fan-in 2 circuit. This would

allow us to talk in terms of the number of nodes instead of edges.

Each gate of the circuit Φ computes a local operation on the two children. To formalize

this, define a new variable yg for every gate g ∈ Φ. Further, for every gate g define a

quadratic equation Qg as

Qg =

yg − (yg1 + yg2) if g = g1 + g2

yg − (yg1 · yg2) if g = g1 · g2.

59

Further if yo corresponds to the output gate, then the system of equations

{Qg = 0 : g ∈ Φ} ∪ {yo = 1}

completely characterize the computations of Φ that results in an output of 1.

The same can also be extended for multi-output circuits that compute several polynomials

simultaneously. In such cases, the set of equations

{Qg = 0 : g ∈ Φ} ∪ {yoi = 1 : i = 1, . . . , n}

completely characterize computations that result in an output of all ones. The following

classical theorem allows us to bound the number of common roots to a system of polynomial

equations.

Theorem 6.2 (Bézout’s theorem). Let g1, . . . , gr ∈ F[X] and deg(gi) = di such that the

number of common roots of g1 = · · · = gr = 0 is finite. Then, the number of common roots

(counted with multiplicities) is bounded by
∏
di.

Thus in particular, if we have a circuit Φ of size s that simultaneously computes
{
xd1, . . . , x

d
n

}
,

then we have dn inputs that evaluate to all ones (where each xi must be a d-th root of unity).

Hence, Bézout’s theorem implies that

2s ≥ dn =⇒ s = Ω(n log d).

Observe that
{
xd1, . . . , x

d
n

}
are all first-order derivatives of f = xd+1

1 + · · · + xd+1
n (with

suitable scaling). A natural question here is the following — if f can be computed an arith-

metic circuit of size s, what is the size required to compute all first-order partial derivatives

of f simultaneously? The näıve approach of computing each derivative separately results in

a circuit of size O(s · n). Baur and Strassen [BS83] show that we can save a factor of n.

Lemma 6.3 ([BS83]). Let Φ be an arithmetic circuit of size s and fan-in 2 that computes a

polynomial f ∈ F[X]. Then, there is a multi-output circuit of size O(s) computing all first

order derivatives of f .

Note that this immediately implies that any circuit computing f = xd+1
1 + · · · + xd+1

n

requires size Ω(n log d) as claimed by Theorem 6.1.

60

6.1.2 Computing all first order derivatives simultaneously

Since we are working with fan-in 2 circuits, the number of edges is at most twice the size.

Hence let s denote the number of edges in the circuit Φ. We shall prove by induction that all

first order derivatives of Φ can be computed by a circuit of size at most 5s. Pick a non-leaf

node v in the circuit Φ closest to the leaves with both its children being variables, and let

x1 and x2 are the variables feeding into v. In other words, v = x1 � x2 where � is either +

or ×.

Let Φ′ be the circuit obtained by deleting the two edges feeding into v, and replacing v

by a new variable. Hence, Φ′ computes a polynomial f ′ ∈ F[X ∪{v}] and has at most (s−2)

edges. By induction on the size, we can assume that there is a circuit D(Φ′) consisting of at

most 5(s− 2) edges that computes all the first order derivatives of f ′.

Observe that since f ′ |(v=x1�x2)= f(x), we have that

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1�x2

+

(
∂f ′

∂v

)
v=x1�x2

(
∂(x1 � x2)

∂xi

)
.

Hence, if v = x1 + x2 then

∂f

∂x1

=

(
∂f ′

∂x1

)
v=x1+x2

+

(
∂f ′

∂v

)
v=x1+x2

∂f

∂x2

=

(
∂f ′

∂x2

)
v=x1+x2

+

(
∂f ′

∂v

)
v=x1+x2

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1+x2

for i > 2.

If v = x1 · x2, then

∂f

∂x1

=

(
∂f ′

∂x1

)
v=x1·x2

+

(
∂f ′

∂v

)
v=x1·x2

· x2

∂f

∂x2

=

(
∂f ′

∂x2

)
v=x1·x2

+

(
∂f ′

∂v

)
v=x1·x2

· x1

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1·x2

for i > 2.

Hence, by adding at most 10 additional edges (see Figure 6.1, with the additional edges

marked in red) to D(Φ′), we can construct D(Φ) with at most 5s edges. (Lemma 6.3)

61

f

×

f

x1 x2

s edges

f ′

v

(s− 2) edges

x1 x2

×

× ×

+

∂1f

+

∂2f ∂nf· · ·

D(f)
5(s− 2) + 10 edges

v x1 x2

∂vf
′ ∂1f

′ ∂2f
′ ∂nf

′· · ·

D(f ′)
5(s− 2) edges

Figure 6.1: Baur-Strassen pictorially for v = x1 × x2

6.2 Lower bounds for formulas

This section would be devoted to the proof of Kalorkoti’s lower bound [Kal85] for formulas

computing Detn or Permn.

Theorem 6.4 ([Kal85]). Any arithmetic formula computing Permn (or Detn) requires Ω(n3)

size.

Although this is an Ω(n3/2) lower bound, where n is the number of variables, the same

technique can also give an Ω(n2) lower bound for the following polynomial.

Theorem 6.5 ([Kal85]). Any arithmetic formula computing
∑n

i=1

∑n
j=1 x

j
iyj requires Ω(n2)

size.

In this section, we shall prove the lower bound for Detn and Permn and leave Theorem 6.5

as an exercise.

62

The exploitable weakness in this setting is again to use the fact that the polynomials

computed at intermediate gates share many polynomial dependencies.

Definition 6.6 (Algebraic independence). A set of polynomials {f1, . . . , fm} is said to

be algebraically independent if there is no non-trivial polynomial H(z1, . . . , zm) such that

H(f1, . . . , fm) = 0.

The size of the largest algebraically independent subset of f = {f1, . . . , fm} is called the

transcendence degree (denoted by trdeg(f)). ♦

The proof of Kalorkoti’s theorem proceeds by defining a complexity measure using the

above notion of algebraic independence.

The Measure: For any subset of variables Y ⊆ X, we can write a polynomial f ∈ F[X]

of the form f =
∑s

i=1 fi ·mi where mi’s are distinct monomials in the variables in Y , and

fi ∈ F [X \ Y]. We shall denote by tdY (f) the transcendence degree of {f1, . . . , fs}
Fix a partition of variables X = X1 t · · · tXr. For any polynomial f ∈ F[X], define the

map Γ[Kal] : F[X]→ Z≥0 as

Γ[Kal](f) =
r∑
i=1

tdXi(f).

The lower bound proceeds in two natural steps:

1. Show that Γ[Kal](f) is small whenever f is computable by a small formula.

2. Show that Γ[Kal](Detn) is large.

6.2.1 Upper bounding Γ[Kal] for a formula

Lemma 6.7. Let f be computed by a fan-in two formula Φ of size s. Then for any partition

of variables X = X1 t · · · tXr, we have Γ[Kal](f) = O(s).

Proof. For any node v ∈ Φ, let Leaf(v) denote the leaves of the subtree rooted at v and

let LeafXi(v) denote the leaves of the subtree rooted at v that are in the set Xi. Since

the underlying graph of Φ is a tree, it follows that the size of Φ is bounded by a twice the

number of leaves. For each set Xi, we shall show that tdXi(f) = O(|LeafXi(Φ)|), which

would prove the required bound.

Fix an arbitrary set Y = Xi. Since the goal is to just get a bound on LeafY (Φ), we

shall modify the formula Φ by introducing new leaf variables that compute polynomial in

63

F[X \ Y]. This does not affect the size of LeafY (Φ). This in some sense is allowing Φ to

“freely” compute any polynomial on variables outside Y , as we are only interested in how

many times the Y variables are used in the computation of Φ.

We modify Φ by introducing a new type of gate � that takes a node g and two leaves

`1 and `2 and computes �(g, `1, `0) = (`1 · g) + `0. We shall always ensure that when we

introduce new leaf nodes, they only hold polynomials F[X \ Y].

Define the following three sets of nodes:

V0 = {v ∈ Φ : |LeafY (v)| = 0}

V1 = {v ∈ Φ : |LeafY (v)| = 1 and |LeafY (Parent(v))| ≥ 2}

V2 = {v ∈ Φ : |LeafY (v)| ≥ 2} .

Each node v ∈ V0 computes a polynomial in fv ∈ F[X \ Y], and we shall replace the

subtree at v by a leaf computing the polynomial fv.

Similarly, any node v ∈ V1 computes a polynomial of the form f1 · yv + f0 for some

yv ∈ Y and f0, f1 ∈ F[X \ Y]. We shall create two new leaf nodes `0, `1 computing f0 and

f1 respectively, and replace the gate v by a � gate with inputs yv, `1, `0 so that it computes

�(yv, `1, `0) = (f1 · yv) + f0

Hence, the formula Φ now reduces to a smaller formula ΦY with leaves being the nodes

in V0 and V1 (and nodes in V2 are unaffected). Furthermore, all new leaves that are added

compute polynomials in F[X \ Y] and hence LeafY is unchanged. We would like to show

that the size of the reduced formula, which is at most twice the number of its leaves, is

O(|LeafY (Φ)|).

Observation 6.8. |V1| ≤ |LeafY (Φ)|.

Proof. Each node in V1 has a distinct leaf labelled with a variable in Y . Hence, |V1| is

bounded by the number of leaves labelled with a variable in Y . (Obs)

This shows that the V1 leaves are not too many. Unfortunately, we cannot immediately

bound the number of V0 leaves, since we could have a long chain of V2 nodes each with one

sibling being a V0 leaf. The following observation would show how we can eliminate such

long chains.

Observation 6.9. Let u be an arbitrary node, and v be another node in the subtree rooted

at u with LeafY (u) = LeafY (v). Then the polynomial gu computed at u and the polynomial

gv computed at v are related, i.e., gu = f1gv + f0 for some f1, f0 ∈ F[X \ Y].

64

Proof. If LeafY (u) = LeafY (v), then every node on the path from u to v must have a V0

leaf as the other child. The observation follows as all these nodes are + or × gates. (Obs)

Using the above observation, we shall remove the need for V0 nodes completely by adding

new F[X \ Y] leaves and � gates. Formally, if a V0 node computing f was connected to a +

node that was computing f + g, then we can replace the V0 node by a new leaf `f computing

f and replace that + node with �(g, 1, `f) = (g · 1) + f . Similarly, if a V0 node computing

f was incident on a × node that was computing f · g, then we can replace the V0 node by a

new leaf `f computing f and replace the × gate with a �(g, `f , 0) = g · f + 0.

Furthermore, using Observation 6.9, we can now contract any two nodes u and v with

LeafY (u) = LeafY (v), we can replace the entire chain from u to v by an appropriate �

node. This ensures that no � node is connected to another � node. Overall, Φ has been

transformed in the following ways:

1. all V0 nodes are replaced by leaves,

2. all V1 are replaced by � nodes with three leaves incident on it,

3. no � node is incident on another � node, and hence its parent is a V2 node,

4. distinct vertices u, v ∈ V2 satisfy LeafY (u) 6= LeafY (v),

5. leaves in Y are untouched,

6. all new leaves compute polynomials only in F[X \ Y].

(2) implies that the number of |V1| nodes in Φ̂Y is at most |LeafY (Φ)|. Also (4) implies

the number of V2 nodes is at most |LeafY (Φ)| − 1. Therefore, the size of the augmented

formula Φ̂Y is at most 2 |LeafY (Φ)|.

Suppose Φ computes a polynomial f , which can be written as f =
∑t

i=1 fi · mi with

fi ∈ F[X \ Y] and mi’s being distinct monomials in Y . Since Φ̂Y also computes f , each fi is

a polynomial combination of the leaves of Φ̂Y that compute polynomials in F[X \ Y]. Since

Φ̂Y consists of at most 2 |LeafY (Φ)| augmented nodes, we have that tdY (f) ≤ 4 |LeafY (Φ)|.
Therefore,

tdY (f) = trdeg {fi : i ∈ [t]} ≤ 4 |LeafY (Φ)|

Hence,

Γ[Kal](Φ) =
r∑
i=1

tdXi(fi) ≤ 4

(
r∑
i=1

|LeafXi|

)
= O(s).

65

6.2.2 Lower bounding Γ[Kal](Detn)

Lemma 6.10. Let X = X1t· · ·tXn be the partition as defined by Xt = {xij : i− j ≡ t mod n}.
Then, Γ[Kal](Detn) = Ω(n3).

Proof. By symmetry, it is easy to see that tdXi(Detn) is the same for all i. Hence, it suffices

to show that tdY (Detn) = Ω(n2) for Y = Xn = {x11, . . . , xnn}.
To see this, observe that the determinant consists of the monomials

(
x11...xnn
xiixjj

)
·xijxji for

every i 6= j. Hence, tdY (Detn) ≥ trdeg {xijxji : i 6= j} = Ω(n2). Therefore, Γ[Kal](Detn) =

Ω(n3).

The proof of Theorem 6.4 follows from Lemma 6.7 and Lemma 6.10.

Exercise 6.1 Prove an Ω(n2) lower bound for Γ[Kal](f) where f =
∑n

i=1

∑n
j=1 x

j
iyj for

an appropriate partition.

66

Chapter 7

Determinantal Complexity Lower

Bounds

Recall that any polynomial f that is computable by an ABP of polynomial size can be

written as a projection of the determinant (Theorem 3.6). Thus, a direct way to prove lower

bounds is to find an explicit polynomial that requires super-polynomially large determinants

to compute it. Hence, for a polynomial f , it is natural to ask “If f is to be written as a

projection of anm×m determinant, how large shouldm be?” This is called the determinantal

complexity of f .

Definition 7.1. Let f be an n-variate polynomial. The determinantal complexity of f(x),

denoted by DetComp(f) is the smallest m such that there is an m × m matrix A(x) with

each entry being an linear function in x such that f = det(A(x)). ♦

By Theorem 3.6, if we could show that DetComp(Permn) = nω(1), then this immediately

would imply super-polynomial circuit lower bounds.

Some prior work

In 1986, Von zur Gathen [vzG86] proved that DetComp(Permn) ≥
(√

8
7

)
n. Subsequently,

Cai [Cai90] and Meshulam [Mes89] independently improved the lower bound to
√

2n.

In 2004, Mignon and Ressayre[MR04] came up with a new idea of using second order

derivatives and proved the first super-linear lower bound of DetComp(Permn) ≥ n2

2
over

fields of characteristic zero. Following that, Cai, Chen and Li [CCL08] extended the result

of Mignon and Ressayre to all fields of characteristic 6= 2.

67

In this chapter, we shall see the proof of Mignon and Ressayre’s result. We first describe

some intuition for the approach of Mignon and Ressayre of using the Hessian.

7.1 Why Hessian?

As in all the previous lower bounds, we would like to identify a certain “weakness of the

model”, and here we are attempting to identify some properties of the determinant that

are not shared by the permanent. The following is the key question that led Mignon and

Ressayre towards their approach.

Consider a matrix X0 for which Detn(X0) = 0. What are the perturbations of X0

that continue to keep Detn to be zero?

What is the answer to the same question for Permn?

Small perturbation around points where the function stays constant is really just the

tangent plane at that point. Their main observation was that the answer to the tangent

planes at zeros of Detn and Permn look very different.

In the case of Detn, since Detn(X0) = 0, there is some non-zero vector v in the kernel.

Now consider the space vector space V of matrices that also have v in their kernel. Then,

clearly Detn(M + X0) is also zero for every M ∈ V . Notice that V is a space of dimen-

sion at least n2 − n as enforcing M(v) = 0 adds just n homogeneous constraints on n2

variables. Hence, around any zero of Detn is a huge subspace in which Detn continues to

stay zero. Such a statement, intuitively, should be unlikely to hold for a generic matrix X0

with Permn(X0) = 0. The question now is if we can convert this geometric statement into a

measure.

Let us attempt to formalize this intuition. For an arbitrary n-variate function f , let us

look at the zero surface of all points with f(X) = 0 and let X0 be one such point on the

surface. The tangent of the surface at the point X0 is a hyperplane whose normal is specified

by the gradient of f defined as

∇f(X0) = (∂1(f), . . . , ∂n(f)) (X0)

If it so turns out that, f(λV + X0) = 0 for all λ ∈ F, and hence V must also lie on the

tangent plane. This therefore also implies that V must be perpendicular to ∇f(X0) as well.

68

Note that this does not imply that the gradient at V +X0 must be equal to ∇f(X0) but at

the very least they must both be perpendicular to V .

Now suppose we have a vector space V of dimension n− r such that for every V ∈ V we

have f(V + X0) = 0. For any V ∈ Fn let GV = ∇f(X0 + V), the gradient of f at X0 + V .

By the discussion above, we know that GV ⊥ V for every V ∈ V . Therefore,

rank {GV : V ∈ V} ≤ r.

If we have n − r ≥ r, then this implies that there must be at least (n − 2r) directions in

which ∇f(X0) does not change. This can be precisely captured by the Hessian of f , denoted

by Hess(f), defined as follows:

Hess(f)(X0) :=


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂xn∂xn

 (X0).

In other words, the i-th row of the Hessian corresponds to the derivative of ∇f with respect

to xi. Since there are n − 2r directions in which the gradient does not change, this implies

that the rank of the Hessian at X0 is at most 2r. This is formalized in the following lemma.

Lemma 7.2. Let f be an n-variate polynomial and let f(X0) = 0 for some X0 ∈ Fn. If

there is a space V such that f(X0 + V) = 0 for all V ∈ V and if dimV = n− r, then

rank (Hess(f)(X0)) ≤ 2r.

Proof. Consider the H : V → Fn that maps M ∈ V to ∂M(∇f)(X0), the coordinate-wise

directional derivative of ∇f in the direction M evaluated at X0. That is,

∂M(∇f)(X0) =

((
∂G1

∂M

)
(X0), . . . ,

(
∂Gn

∂M

)
(X0)

)
∈ Fn

where G = (G1, . . . , Gn) = ∇f .

We know that (∇f)(X0) is perpendicular to V but we claim that ∂M(∇f)(X0) is also

perpendicular to V . This is because (∇f)(X0 + εM)− (∇f)(X0) ∈ V⊥ for every ε ∈ F, and

therefore we must have ∂M(∇f)(X0) ∈ V⊥.

Furthermore, note that H is linear map, just by the definition of directional derivatives.

Thus H is a linear map from a space V of dimension at least n − r to a V⊥ of dimension

69

at most r. Therefore, the kernel of H has dimension at least n − 2r. Since H is just the

restriction of Hess(f)(X0) to the space V , it follows that rank(Hess(f)(X0)) ≤ 2r.

Corollary 7.3. For any X0 such that Detn(X0) = 0, we have

rank (Hess(Detn)(X0)) ≤ 2n.

Thus the rank of the Hessian at a zero of the polynomials certainly seems like a good

complexity measure for determinantal complexity.

7.2 The lower bound of Mignon-Ressayre

The main theorem of this section would be the following.

Theorem 7.4 ([MR04]). Over any characteristic zero field, DetComp(Permn) ≥ n2/2.

The rest of this section would be dedicated to the proof of this theorem. Throughout

this section, we shall assume that F is a characteristic zero field. Let Permn = Detm(A(x))

where A(x) is an m ×m matrix consisting of linear polynomials. The goal is to show that

m ≥ n2/2. As mentioned earlier, the complexity measure would the rank of the Hessian at

a carefully chosen matrix X0. The proof is immediate from the following two lemmas.

Lemma 7.5 (Upper bound for determinant). Let X0 ∈ Fn2
such that Detm(A(X0)) = 0.

Then,

rank
(

Hess(Detm(AX))(X0)
)
≤ 2m.

Lemma 7.6 (Lower bound for permanent). There exists X0 ∈ Fn2
such that Permn(X0) = 0

and

rank
(

Hess(Permn(X0)
)

= n2.

The proof of Lemma 7.5 is quite an easy adaptation of Lemma 7.2, and the proof of

Lemma 7.6 is a just a (slightly tedious) calculation.

Proof of Lemma 7.5. Let A(X −X0) = L(X) + B0 where L(X) is a matrix of linear forms

(no constant term) and B0 a matrix of constants. Since Detm(A(X0)) = 0, we must have

70

that Detm(B0) = 0. Let v ∈ Fm2
be a vector such that Bv = 0. Consider the vector space

V defined by

V :=
{
M ∈ Fn2

: L(M) v = 0
}
.

As earlier, we have dimV ≥ n2 − m and Detm(A(M + X0)) = 0 for all M ∈ V . Hence,

applying Lemma 7.2 to f(X) = Detm(A(X)), we have

rank
(

Hess(Detm(AX))(X0)
)
≤ 2m.

Proof of Lemma 7.6. Mignon and Ressayre [MR04] use the following matrix for X0:

X0 =


1− d 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 .

Since the proof is just a calculation, we only mention the main steps of the proof and leave

it as an exercise to fill in the details.

Claim 7.7. For X0 as defined above, the matrix Hess(Permn)(X0) can be expressed as

Hess(Permn)(X0) = (d− 3)! ·



0 P P · · · P

P 0 Q · · · Q

P Q 0
. . .

...
...

...
. Q

P Q · · · Q 0


n2×n2

where

P = (d−2)


0 1 · · · 1

1 0
. . .

...
...

. 1

1 · · · 1 0


n×n

and Q =



0 d− 2 d− 2 · · · d− 2

d− 2 0 −2 · · · −2

d− 2 −2 0
. . .

...
...

...
. −2

d− 2 −2 · · · −2 0


n×n

.

71

Claim 7.8. For any pair of invertible n× n matrices P and Q, the matrix

0 P P · · · P

P 0 Q · · · Q

P Q 0
. . .

...
...

...
. Q

P Q · · · Q 0


is also invertible.

From these two claims, it follows that Hess(Permn)(X0) is invertible and hence has rank

n2.

Theorem 7.4 follows from Lemma 7.5 and Lemma 7.6. (Theorem 7.4)

72

Chapter 8

Some simple lower bounds

8.1 “Natural” proof strategies

The lower bounds presented in Chapter 6 proceeded by first identifying a weakness of the

model, and exploiting it in an explicit manner. More concretely, Section 6.2 presents a

promising strategy that could be adopted to prove lower bounds for various models of arith-

metic circuits. The crux of the lower bound was the construction of a good map Γ that

assigned a number to every polynomial. The map Γ[Kal] was useful to show a lower bound

in the sense that any f computable by a small formula had small Γ[Kal](f). In fact, all sub-

sequent lower bounds in arithmetic circuit complexity have more or less followed a similar

template of a “natural proof”. More concretely, all the subsequent lower bounds we shall

see would essentially follow the outlined plan.

Step 1 (normal forms) For every circuit in the circuit class C of interest,

express the polynomial computed as a small sum of simple building blocks.

For example, every ΣΠΣ circuit is a small sum of products of linear polynomials which

are the building blocks here. In this case, the circuit model naturally admits such a rep-

resentation but we shall see other examples with very different representations as sum of

building blocks.

Step 2 (complexity measure) Construct a map Γ : F[x1, . . . , xn]→ Z≥0 that

is sub-additive i.e. Γ(f1 + f2) ≤ Γ(f1) + Γ(f2).

In most cases, Γ(f) is the rank of a large matrix whose entries are linear functions in the

coefficients of f . In such cases, we immediately get that Γ is sub-additive.

73

The strength of the choice of Γ is determined by the next step.

Step 3 (potential usefulness) Show that if B is a simple building block, then

Γ(B) is small. Further, check if Γ(f) for a random polynomial f is large (poten-

tially).

This would suggest that if any f with large Γ(f) is to be written as a sum of B1 +· · ·+Bs,

then sub-additivity and the fact that Γ(Bi) is small for each i and Γ(f) is large immediately

imply that s must be large. This implies that the complexity measure Γ does indeed have a

potential to prove a lower bound for the class. The next step is just to replace the random

polynomial by an explicit polynomial.

Step 4 (explicit lower bound) Find an explicit polynomial f for which Γ(f)

is large.

These are usually the steps taken in almost all the known arithmetic circuit lower bound

proofs. The main ingenuity lies in constructing a useful complexity measure, which is really

to design Γ so that it is small on the building blocks.

Of course, there could potentially be lower bound proofs that do not follow the road-map

outlined. For instance, it could be possible that Γ is not small for a random polynomial,

but specifically tailored in a way to make Γ large for the Permn. Or perhaps Γ need not

even be sub-additive and maybe there is a very different way to argue that all polynomial

in the circuit class have small Γ. However, this has been the road-map for almost all lower

bounds so far (barring very few exceptions). As a warmup, we first present some very simple

applications of the above plan to prove lower bounds for some very simple subclasses of

arithmetic circuits in the next section. We then move on to more sophisticated proofs of

lower bounds for less restricted subclasses of circuits.

Let us start with the simplest complete1 class of arithmetic circuits – depth-2 circuits or

ΣΠ circuits.

8.1.1 Lower bounds for ΣΠ circuits

Any ΣΠ circuit of size s computes a polynomial f = m1 + · · · + ms where each mi is a

monomial multiplied by a field constant. Therefore, any polynomial computed by a small

1in the sense that any polynomial can be computed in this model albeit of large size

74

ΣΠ circuit must have a small number of monomials. Hence, it is obvious that any polynomial

that has many monomials require large ΣΠ circuits.

This can be readily rephrased in the language of the outline described last section by

defining Γ(f) to simply be the number of monomials present in f . Hence, Γ(f) ≤ s for any f

computed by a ΣΠ circuit of size s. Of course, even a polynomial like f = (x1+x2+· · ·+xn)n

have Γ(f) = nΩ(n) giving the lower bound.

8.1.2 Lower bounds for Σ∧Σ circuits

A Σ∧Σ circuit of size s computes a polynomial of the form f = `d1
1 + · · ·+ `dss where each `i

is a linear polynomial over the n variables.2

Clearly as even a single `d could have exponentially many monomials, the Γ defined above

cannot work in this setting. Nevertheless, we shall try to design a similar map to ensure

that Γ(f) is small whenever f is computable by a small Σ∧Σ circuit.

In this setting, the building blocks are terms of the form `d. The goal would be to

construct a sub-additive measure Γ such that Γ(`d) is small. Here is the key observation to

guide us towards a good choice of Γ.

Observation 8.1. Any k-th order partial derivative of `d is a constant multiple of `d−k.

Hence, if ∂=k(f) denotes the set of k-th order partial derivatives of f , then the space

spanned by ∂=k(`d) has dimension 1. This naturally leads us to define Γ exploiting this

weakness.

Γk(f)
def
= dim

(
∂=k(f)

)
It is straightforward to check that Γk is indeed sub-additive and hence Γk(f) ≤ s whenever

f is computable by a Σ∧Σ circuit of size s. For a random polynomial f , we should be

expecting Γk(f) to be
(
n+k
k

)
as there is unlikely to be any linear dependencies among the

partial derivatives. Hence, all that needs to be done is to find an explicit polynomial with

large Γk.

If we consider Detn or Permn, then any partial derivative of order k is just an (n− k)×
(n−k) minor. Also, these minors consist of disjoint sets of monomials and hence are linearly

independent. Hence, Γk(Detn) =
(
n
k

)2
. Choosing k = n/2, we immediately get that any Σ∧Σ

2such circuits are also called diagonal depth-3 circuits in the literature

75

circuit computing Detn or Permn must be of size 2Ω(n).

8.1.3 Low-rank ΣΠΣ

A slight generalization of Σ∧Σ circuits is a rank-r ΣΠΣ circuit that computes a polynomial

of the form

f = T1 + . . . + Ts

where each Ti = `i1 . . . `id is a product of linear polynomials such that dim {`i1, . . . , `id} ≤ r.

Thus, Σ∧Σ is a rank-1 ΣΠΣ circuit, and a similar partial-derivative technique for lower

bounds works here as well.

In the setting where r is much smaller than the number of variables n, each Ti is es-

sentially an r-variate polynomial masquerading as an n-variate polynomial using an affine

transformation. In particular, the set of n first order derivatives of T have rank at most r.

This yields the following observation.

Observation 8.2. Let T = `1 . . . `d with dim {`1, . . . , `d} ≤ r. Then for any k, we have

Γk(T)
def
= dim

(
∂=k(T)

)
≤ min

((
r + k

k

)
,

(
d

k

))
Thus once again by sub-additivity, for any polynomial f computable by a rank-r ΣΠΣ

circuit of size s, we have Γk(f) ≤ s ·
(
r+k
r

)
. Note that a random polynomial is expected

to have Γk(f) close to
(
n+k
k

)
, which could be much larger for r � n. We already saw that

Γk(Detn) =
(
n
k

)2
. This immediately gives the following lower bound, the proof of which we

leave as an exercise to the interested reader.

Theorem 8.3. Let r ≤ n2−δ for some constant δ > 0. For k = εnδ, where ε > 0 is

sufficiently small, we have (
n
k

)2(
r+k
k

) = exp
(
Ω(nδ)

)
.

Hence, any rank-r ΣΠΣ circuit computing Detn or Permn must have size exp
(
Ω(nδ)

)
.

This technique of using the rank of partial derivatives was introduced by Nisan and

Wigderson [NW97] to prove lower bounds for homogeneous depth-3 circuits (which also fol-

lows as a corollary of Theorem 8.3). The survey of Chen, Kayal and Wigderson [CKW11]

76

give a comprehensive exposition of the power of the partial derivative method.

In the examples we saw above, Step 1 of constructing the normal forms were obtained

from just the model of computation. We conclude this chapter with a more non-trivial

example of a lower bound where the building blocks are constructed differently.

8.2 Lower bounds for monotone circuits

We shall now see a slight generalization of a lower bound by Jerrum and Snir [JS82]. To

motivate our presentation here, let us first assume that the underlying field is R, the field of

real numbers. A monotone circuit over R is a circuit having +,× gates in which all the field

constants are non-negative real numbers. Such a circuit can compute any polynomial f over

R all of whose coefficients are nonnegative real numbers, such as for example the permanent.

It is then natural to ask whether there are small monotone circuits over R computing the

permanent. Jerrum and Snir [JS82] obtained an exponential lower bound on the size of

monotone circuits over R computing the permanent. Note that this definition of monotone

circuits is valid only over R (actually more generally over ordered fields but not over say

finite fields) and such circuits can only compute polynomials with non-negative coefficients.

Here we will present Jerrum and Snir’s argument in a slightly more generalized form such

that the circuit model makes sense over any field F and is complete, i.e. can compute any

polynomial over F.3 Let us first explain the motivation behind the generalized circuit model

that we present here. Observe that in any monotone circuit over R, there is no cancellation

as there are no negative coefficients. Formally, for a node v in our circuits let us denote by

fv the polynomial computed at that node. For a polynomial f let us denote by Mon(f) the

set of monomials having a nonzero coefficient in the polynomial f .

1. If w = u+ v then

Mon(fw) = Mon(fu) ∪Mon(fv).

2. If w = u× v then

Mon(fw) = Mon(fu) ·Mon(fv)
def
= {m1 ·m2 : m1 ∈ Mon(fu),m2 ∈ Mon(fv)} .

This means that for any node v in a monotone circuit over R one can determine Mon(fv)

3This generalization was told to me by Neeraj Kayal

77

in a very syntactic manner starting from the leaf nodes. Let us make precise this syntactic

computation that we have in mind.

Definition 8.4 (Formal Monomials.). Let Φ be an arithmetic circuit. The formal monomials

at any node v ∈ Φ, which shall be denoted by FM(v), shall be inductively defined as follows:

If v is a leaf labelled by a variable xi, then FM(v) = {xi}. If it is labelled by a

constant, then FM(v) = {1}.

If v = v1 + v2, then FM(v) = FM(v1) ∪ FM(v2).

If v = v1 × v2, then

FM(v) = FM(v1) · FM(v2)
def
= {m1 ·m2 : m1 ∈ FM(v1),m2 ∈ FM(v2)} .

♦

Note that for any node v in any circuit we have Mon(fv) ⊆ FM(v) but in a monotone circuit

over R this containment is in fact an equality at every node. This motivates our definition

of a slightly more general notion of a monotone circuit as follows.

Definition 8.5 (Monotone circuits). A circuit C is said to be syntactically monotone (simply

monotone for short) if Mon(fv) = FM(v) for every node v in C. ♦

The main theorem of this section is the following:

Theorem 8.6 ([JS82]). Over any field F, any syntactically monotone circuit C computing

Detn or Permn must have size at least 2Ω(n).

The proof of this theorem is relatively short assuming the following structural result

(which is present in standard depth-reduction proofs [VSBR83, AJMV98]).

Lemma 8.7. Let f be a degree d polynomial computed by a monotone circuit of size s. Then,

f can be written of the form f =
∑s

i=1 fi · gi where the fi’s and gi’s satisfy the following

properties.

1. For each i ∈ [s], we have d
3
< deg gi ≤ 2d

3
.

2. For each i, we have FM(fi) · FM(gi) ⊆ FM(f).

78

Sketch of Proof. The proof of this Lemma is just an application of (5.13) with t = d/3:

f = [root] =
∑
v∈Ft

[root : v] · [v]

It is easy to observe that [root : v] and [v] are polynomials of degree between d/3 and 2d/3.

Further, it can also be seen that the above equation preserves monotonicity if the original

circuit was monotone.

Exercise 8.1 Show that the process of homogenization and depth reduction via Theo-

rem 5.8 and Theorem 5.17 on a monotone circuit results in a monotone circuit as well.

The complexity measure Γ(f) in this case is just the number of monomials in f , but

it is the above normal form that is crucial in the lower bound. Although Theorem 8.6

gives a lower bound for Detn and Permn, we shall give a simpler lower bound for a different

polynomial and leave proving a lower bound for Detn and Permn

Theorem 8.8. Any monotone circuit Φ computing the polynomial NWn,n,n/10 must have

size nΩ(n).

Proof. Let us assume that Φ is a size s monotone circuit that computes f = NWn,n,n/10.

Then by Lemma 8.7,

f =
s∑
i=1

fi · gi

with the appropriate degree bounds. Suppose fi had at least two non-zero monomials m1

and m2, for any monomial m ∈ gi we would have m1 · m ∈ FM(f) and m2 · m ∈ FM(f).

But since gi is a polynomial of degree at least n/3, this implies the monomials m1 ·m and

m2 ·m are two distinct monomials that intersect in at least n/3 places. But this contradicts

the key property of the NW family (Lemma 2.5) which is that no two monomials intersect

in more than n/10 places. Thus, each of the fi’s and gi’s must in fact be monomials and

hence Γ(fi · gi) ≤ 1 for each i. This then immediately forces

Γ(NWn,n,n/10) = nΩ(n) ≤
s∑
i=1

Γ(fi · gi) ≤ s

79

Exercise 8.2 Using the normal form provided by Lemma 8.7 to prove a 2Ω(n) lower

bound for Detn and Permn.

We shall now proceed towards some more involved lower bounds.

80

Part III

Partial Derivative Spaces

81

Chapter 9

Lower bounds for depth-3 circuits

In this chapter, we shall see the lower bound of Shpilka and Wigderson [SW01] for non-

homogeneous depth-3 circuits over arbitrary fields. The main theorem of this section would

be the following quadratic lower bound.

Theorem 9.1 ([SW01]). Any ΣΠΣ circuit that computes the polynomial Symd, for d = n/100

must have at least Ω(n2) wires.

In fact, Symd can indeed be computed by a O(n2)-sized ΣΠΣ circuit over a characteristic

zero field (Exercise 5.3) and hence the above result is tight for Symd. Until recently, this was

the best lower bound we knew for the class of general ΣΠΣ circuits but a very recent result

of Kayal, Saha and Tavenas [KST16] has improved this to an almost cubic lower bound (for

a different explicit family of polynomials) which we shall see at a later point. This chapter

however shall focus on the proof of the above theorem.

9.1 Lower bounds for hom. ΣΠΣ circuits [NW97]

Let us first consider the following restricted question. Say we want to compute an n-variate

degree d polynomial f using a ΣΠΣ circuit, but under the restriction that all intermediate

computations have degree at most d. The class of such circuits are denoted by ΣΠ[d]Σ

circuits. Can we prove lower bounds for this class first?

Indeed, and in fact we have already seen how to in Chapter 8. But it would be good to

recall the method again as we would be using this heavily.

Theorem 9.2 ([NW97]). Any ΣΠ[d]Σ circuit that computes Symd must have size
(n
d/2)
2d

.

82

Thus, if n = 3d, this gives an exponential lower bound.

Proof. For a polynomial f , define the dimension of k-th order partial derivatives, denoted

by Γ
[NW]
k (f), as follows

Γ
[NW]
k (f) = dim ∂=k(f)

Claim 9.3. If f = `1 · · · `d where each `i is a linear polynomial, then Γ
[NW]
k (f) ≤

(
d
k

)
. Thus,

if f = `11 · · · `1d + · · ·+ `s1 · · · `sd, then Γ
[NW]
k (f) ≤ s ·

(
d
k

)
.

A fact that we would need here but won’t prove is that Symd has large space of partial

derivatives.

Claim 9.4.

Γ
[NW]
k (Symd) = min

((
n

d− k

)
,

(
n

k

))
Hence, for k = d/2, we get

Γ
[NW]
k (Symd) =

(
n

d/2

)
.

The theorem follows directly from these two claims.

9.2 Handling few high degree gates

In the last section we saw a way to prove lower bounds for ΣΠΣ circuits were the degree of

each product of linear forms was bounded by d. Suppose we had a ΣΠΣ circuit C such that

all but say two of the products of linear forms have degree bounded by d. That is,

C = C ′ + T1 + T2

where C ′ ∈ ΣΠ[d]Σ and T1, T2 is a product of linear forms of degree possibly larger than d.

Can we prove lower bounds for such circuits as well?

83

Key Idea: Replace some variables by linear functions in other variables to make T1

and T2 equal to zero.

Say T1 had one of the linear polynomials as x1 +3x2 +5x3−4, then we shall replace x1 by

−(3x2 + 5x3 − 4). The result is that T1 now becomes zero. What happens to T2? Note that

T2 after this substitution still remains a product of linear polynomials, and its degree cannot

increase in this process. However, it may be the case that T2 was (x1 + 3x2 + 5x3− 7)2d and

under our substitution of x1 this reduces to a constant. But this is still good because the

goal is to eliminate all high degree Tis completely (either by making them zero, or reducing

them to constants). This was the key idea of Shpilka and Wigderson [SW01] and we shall

formalize this as a lemma.

Lemma 9.5. Let C = T1+· · ·+Ts be a ΣΠΣ and suppose r of the Tis have degree greater than

d. Then by taking an affine projection of co-dimension at most r, that is by setting at most r

variables to linear functions in the remaining variables, the resulting circuit C ′ = T ′1 + · · ·T ′s′
is a ΣΠ[d]Σ circuit with s′ ≤ s.

In order to prove a lower bound for ΣΠ[d]Σ circuits, we needed to find a polynomial f

for which dim ∂=k(f) is large. The strategy to prove lower bounds for ΣΠΣ circuits with r

or fewer high degree Tis is now clear:

Find a polynomial g such that for every g′ that is an affine projection of co-

dimension r on g (that is, obtained from g by setting at most r variables to

linear functions in the remaining), we have that dim ∂=k(g′) is large.

9.3 Shpilka and Wigderson’s lower bound for ΣΠΣ cir-

cuits

Shpilka and Wigderson [SW01] show that Symd not only has a large dim ∂=k, it also has

large dim ∂=k even after affine projections of co-dimension d/100.

Theorem 9.6 ([SW01]). Consider the polynomial Symd for any d < n
100

. If g is an affine

projection of Symd of co-dimension r < d
100

, then

dim ∂=k(g) ≥ min

((
n− 2r

k

)
,

(
n− 2r

d− 2r − k

))
.

84

Thus, if k = (d− 2r)/2, then

dim ∂=k(g) ≥
(

n− 2r

(d− 2r)/2

)
.

We shall defer the proof of Theorem 9.6 to the end of this section but see why the above

theorem implies Theorem 9.1.

Proof of Theorem 9.1. Consider the polynomial Symd for d = n
100

. Suppose it is computable

by a ΣΠΣ circuit C = T1 + · · · + Ts with at most d2

100
wires. Let r be the number of Tis of

degree more than d. Note that, given the bound on the number of wires, there cannot be

more than d
100

Tis that have degree more than d. Hence, we know that r ≤ d
100

.

Now that r ≤ d
100

, by Lemma 9.5, there is an affine projection ρ of co-dimension at most

r such that

ρ(Symd) = T ′1 + · · ·+ T ′s ∈ ΣΠ[d]Σ

with deg(T ′i) ≤ d and s ≤ d2

100
.

But then, on the one hand we know from Claim 9.3 that Γ
[NW]
k (ρ(Symd)) is at most s ·

(
d
k

)
but on the other hand Theorem 9.6 states that Γ

[NW]
k (ρ(Symd)) is large. If we set the value

of k right (k = (d − 2r)/2 should work) we get a contradiction to the original assumption

that s < d2

100
.

Hence, s > d2

100
= Ω(n2) as claimed by the theorem.

This entire discussion can be summarized in the following very general remark.

Remark 9.7. Suppose we have a measure Γ to prove lower bounds for a degree d poly-

nomial computed by a ΣΠ[D]Σ circuit. If we can find an explicit polynomial f of degree

d with the following properties,

• Γ(f) is large,

• even after an affine restriction ρ of co-dimension r, we have Γ(ρ(f)) is large

Then, we can get a Ω(Dr) lower bound for f . ♦

What we did above was choose the polynomial f as Symd with D = d = Ω(n) and using

the fact that the partial derivative space remains large even after an affine restriction of

co-dimension r = Ω(d), we get a Ω(d2) = Ω(n2) lower bound for ΣΠΣ circuits.

85

However, this remark is quite general and in principle, if we could prove a lower bound

for say ΣΠ[d2]Σ circuits using some measure, then we could potentially extend this to give a

cubic lower bound using the affine projection idea. In fact, Kayal, Saha and Tavenas [KST16]

(which was subsequently strengthened by Balaji, Limaye and Srinivasan [BLS16]) do indeed

show an almost cubic lower bound using a measure that we shall be discussed later.

Theorem 9.8 ([KST16]). There is an explicit n-variate poylnomial f of degree d such that

any ΣΠΣ circuit computing f must require Ω (n3) poly log(n) size.

Much later in the survey1, we shall see the proof of Balaji, Limaye and Srinivasan [BLS16]

that, besides being a much simpler and modular proof of [KST16], also proves the lower

bound for a polynomial computed by a depth-5 circuit.

9.3.1 Rough proof of Theorem 9.6

Let us order the variables as x1 � x2 � · · · � xn. Say we have an affine projection ρ of

co-dimension r that sets the linear polynomials {`1, . . . , `r} to zero. Let xij be the highest

variables participating in each `j, that is,

`j = xij − `′j.

Thus, applying this affine restriction is equivalent to replacing each xij by `′j. To get a sense

of what this does to Symd, let yj be the highest variable participating in `′j.

Let us now look at Symd, paying attention to the variables xijs and yjs. We may assume

that S = {xi1 , . . . , xir , y1, . . . , yr} are all distinct variables (why?).

Symd(x1, . . . , xn) = xi1 · · ·xir · y1 · · · yr · Symd−2r(x \ S) + other monomials

Replacing each xij by `′j introduces higher powers of y1, . . . , yr.

Claim 9.9. If we collect all monomials in ρ(Symd) that are divisible by y2
1 · · · y2

r , it is precisely

y2
1 · · · y2

r · Symd−2r(x \ S).

1This isn’t yet finished; will add this shortly

86

Exercise 9.1 Prove this claim.

That is, such monomials can only be generated by the first term in the above equation.

Now, if we only choose to differentiate by monomials in x \ S, the remaining monomials do

not interfere with the monomials that are divisible by y2
1 · · · y2

r . Therefore we get

dim ∂=k(ρ(Symd)) ≥ dim ∂=k Symd−2r(x \S) = min

((
n− 2r

d− 2r − k

)
,

(
n− 2r

k

))
.

87

Chapter 10

Lower bounds for depth-3 circuits

over finite fields

This chapter shall present the lower bound of Grigoriev and Karpinski [GK98] for ΣΠΣ

circuit computing Detn over finite fields. A follow-up paper of Grigoriev and Razborov

[GR00] extended the result over function fields, also including a weaker lower bound for the

permanent, but we shall present a slightly different proof that works for the permanent as

well.

Theorem 10.1. [GK98] Any depth-3 circuit computing Detd (or Permd) over a finite field

Fq requires size 2Ωq(d).

We shall also prove a similar lower bound for a version of the elementary symmetric

polynomial Symd.

Theorem 10.2. Let n = d2. Then, over any finite field Fq, any depth-3 circuit computing

the polynomial Sym≤d defined as

Sym≤d
def
=

∑
j≤d

Symj =
∑
T⊂[n]
|T |≤d

∏
i∈T

xi

must be of size exp(Ωq(d log n)).

To contrast this, over any field of at least (n + 1) elements, the polynomial Sym≤d can

be computed by an O(n2) sized depth-3 circuit! This fact is attributed to Ben-Or but is a

really nice exercise.

88

Exercise 10.1 Let F be a field with at least (n+1) elements. Show that, for every d ≤ n,

there is a ΣΠΣ computing Symd of size O(n2).

Hint: Consider (1 + tx1) · · · (1 + txn)

Main idea: We are working with the field Fq of q elements. Suppose C = T1 + · · ·+ Ts,

where each Ti is a product of linear polynomials. Define rank(Ti) as in Subsection 8.1.3 to

be the dimension of the set of linear polynomials that Ti is a product of.

In Subsection 8.1.3, we saw that the dimension of partial derivatives would handle low

rank Ti’s. As for the high rank Ti’s, the fact that we are working over a finite field would

become very useful. Since Ti is a product of at least r linearly independent linear polynomials,

a random evaluation keeps Ti non-zero with probability at most
(

1− 1
q

)r
. As q is a constant,

we have that a random evaluation of a high rank Ti is almost always zero. Hence, in a sense,

C can be “approximated” by just the low-rank components.

Grigoriev and Karpinski [GK98] formalize the above idea as a measure by combining

the partial derivative technique seen in Subsection 8.1.3 with evaluations to show that Detd

cannot be approximated by a low-rank ΣΠΣ circuit.

10.1 The complexity measure

For any polynomial f ∈ Fq[x11, . . . , xnn], define the matrix Mk(f) as follows — the columns

of Mk(f) are indexed by k-th order partial derivatives of f , and rows by elements of Fnq , with

the entry being the evaluation of the partial derivative (column index) at the point (row

index).

Mk(f) = ∂=k

A = Fnq \ E

a

∂α

(∂αf)(a)

The rank of Mk(f) could be a possible choice of a complexity measure but it is not sure

if rank(Mk(f)) is small when f is even a single high rank term. However, Grigoriev and

89

Karpinski handle this by make a small modification to handle the high rank Tis. Instead,

they look at the matrix Mk(f) and remove a few erroneous evaluation points and use the

rank of the resulting matrix. For any A ⊆ Fnq , let us define Mk(f ;A) to be the matrix

obtained from Mk(f) by only taking the rows whose indices are in A. Also, let Γ
[GK]
k,A (f)

denote rank(Mk(f ;A)).

10.2 Upper-bounding Γ
[GK]
k,A for a depth-3 circuit

Our task here is to give an upper bound on the complexity measure for a ΣΠΣ-circuit of

size s. We first see that the task reduces to upper bounding the measure for a single term

via subadditivity. It follows from the linearity of the entries of the matrix.

Observation 10.3 (Sub-additivity). Γ
[GK]
k,A (f + g) ≤ Γ

[GK]
k,A (f) + Γ

[GK]
k,A (g).

Let us fix a threshold τ , and let k = τ/10q where q is the size of the finite field we are

working over. The exact value of τ shall be fixed shortly depending on the polynomial we

are proving a lower bound for. For Detd, we shall choose τ = Ω(d). For the elementary

symmetric polynomial Symd, we shall choose τ = Ω(d log n).

We shall call a term T = `1 · · · `d to be of low rank if rank(T) ≤ τ , and large rank oth-

erwise. By the above observation, we need to upper-bound the measure Γ
[GK]
k,A for each term

T , for a suitable choice of A.

Low rank terms (rank(T) ≤ τ):

Suppose T = `1 · · · `d with {`1, . . . , `r} being a maximal independent set of linear polyno-

mials (with r ≤ τ). Then T can be expressed as a linear combination of terms from the set

{`e11 . . . `err : ei ≤ d ∀i ∈ [r]}. And since the matrix Mk(f) depends only on evaluations in

Fnq , we can use the relation that xq = x in Fq to express the evaluation of T on Fnq as a linear

combination of {`e11 . . . `err : ei < q ∀i ∈ [r]}. Therefore, for any set A ⊆ Fn, we have that

Γ
[GK]
k;A (T) ≤ rank(Mk(f)) ≤ qr ≤ qτ .

High rank terms (rank(T) > τ):

Suppose T = `1 . . . `d whose rank is greater than τ , and let {`1, . . . , `r} be a maximal

independent set. We want to use the fact that since T is a product of at least r independent

linear polynomials, most evaluations would be zero. We shall be choosing our A to be the

set where all k-th order partial derivatives evaluate to zero.

90

For each non-constant `i, we know that Pra[`i(a) = 0] = 1/q. Further, if the `is are

linearly independent, then they independently evaluate to zero with probability 1/q. Thus,

on expectation, a random point a would evaluate to zero on r/q > τ/q of them. Since we

chose k = τ/10q � r/q, an application of Chernoff’s bound shows that

Pr
a

[a evaluates to zero on at most k of the factors of T] ≤ exp(−τ/8)

Let ET be the set of as in the above event. Then every a outside ET evaluates at least (k+1)

factors of T to zero. Thus, not only is T zero at a but so are all its k-th order partial

derivatives.

Let E =
⋃
T of large rank ET and let A = Fnq \ E . Then, for any T ∈ C that has large rank,

the matrix Mk(T ;A) is simply the zero matrix and hence Γ
[GK]
k;A (T) = 0. This means that

Γ
[GK]
k;A is entirely contributed by the low-rank terms.

Lemma 10.4 (Upper bound on a small circuit). Let C be a depth-3 circuit over the field Fq
of size at most s. Then, for any τ > 0 and k ≤ τ/10q, there exists a set E of size at most

s · exp(−τ/8) · qn such that

Γ
[GK]
k;A (C) ≤ s · qτ

where A = Fnq \ E.

All that is left to do now is lower bound the measure for an explicit polynomial, and set

the parameter τ appropriately. We shall first consider the polynomial Sym≤d which is a little

simpler, and the look at Detd and Permd.

10.3 Lower bound for Detd and Permd

For the polynomials Detd and Permd, the number of variables is n = d2. The key technical

lemma is to show that Γ
[GK]
k,A (Detd) is large as long as |A| = (1− o(1))qd

2
.

Lemma 10.5. For any set A ∈ Fd2

q such that |A| = (1− o(1)) · qd2
, we have that

Γ
[GK]
k,A (Detd) =

(
d

k

)2

The same bound shall also hold for Permd. We shall defer this theorem for later and see

how this would imply the proof of Theorem 10.1.

91

Proof of Theorem 10.1. Let τ = αd, for a constant α > 0 that shall be chosen shortly, and

k = τ/10q. Assume that there is a ΣΠΣ circuit of size s < exp(τ/10) = exp(αd/10) that

computes Detd. Then, by Lemma 10.4, there is a set A of size (1− o(1))qd
2

such that

Γ
[GK]
k;A (Detd) ≤ s · qαd

On the other hand, by Lemma 10.5 we have

Γ
[GK]
k,A (Detd) =

(
d

k

)2

= Ω
(
22d·H2(α/10q)

)
where H2(γ) is the binary entropy function (Definition 4.1). Together, this forces

s · qαd ≥ Ω
(
22d·H2(α/10q)

)
=⇒ log s = Ω((2H2(α/10q)− α log q) · d)

The binary entropy function satisfies H2(ε) > ε log2(1/ε). Hence, we can always set α

to be small enough constant to ensure that 2H2(α/10q) − α log q > 0. Thus we get s =

exp(Ωq(d)).

We only need to complete the proof of Lemma 10.5.

10.3.1 Proof of Lemma 10.5

We now wish to show that Mk(Detd;A) has large rank. The original proof of Grigoriev and

Karpinski is tailored specifically for the determinant, and does not extend directly to the

permanent. The following argument is a proof communicated by Srikanth Srinivasan [Sri13]

that involves an elegant trick that he attributes to [Kou08]. The following proof is presented

for the determinant, but immediately extends to the permanent as well.

Note that if we were to just consider Mk(Detd), it would have been easy to show that the

rank is full by looking at just those evaluation points that keep exactly one (d− k)× (d− k)

minor non-zero (set the main diagonal of the minor to ones, and every other entry to zero).

Hence, Mk(Detd) has the identity matrix embedded inside and hence must be full rank.

However, we are missing a few of the evaluations (since a small set E of evaluations is

removed) and we would still like to show that the matrix continues to have full column-rank.

92

Lemma 10.6. Let p(X) be a non-zero linear combination of r × r minors of the matrix

X = ((xij)). Then,

Pr
A∈Fd2q

[p(A) 6= 0] ≥ q − 2

q − 1
.

This immediately implies that for every linear combinations of the columns of Mk(Detd),

a constant fraction of the coordinates have non-zero values. Since we are removing merely a

set E of size o(1) · qd2
, there must continue to exist coordinates that are non-zero. In other

words, no linear combination of columns of Mk(Detd;A) results in the zero vector.

The proof of the above lemma would be an induction on the number of minors contribut-

ing to the linear combination. As a base case, we shall use a well-known fact about Detd and

Permd of random matrices.

Proposition 10.7. If A is a random d× d matrix with entries from a fixed finite field Fq,

Pr[det(A) 6= 0] ≥ q − 2

q − 1
.

The proof of this is in fact a nice exercise, and we give a few hints at the end of this

section. Let us begin with the proof of Lemma 10.6.

Proof of Lemma 10.6. If p(X) is a scalar multiple of a single non-zero minor, then we already

have the lemma from Proposition 10.7. Hence, let us assume that there are at least two

distinct minors participating in the linear combination p(X). Without loss of generality,

assume that the first row occurs in some of the minors, and does not in others. That is,

p(X) =

(∑
i:Row1∈Mi

ciMi

)
+

 ∑
j:Row1 /∈Mj

cjMj


= (x11M

′
1 + · · ·+ x1dM

′
d) + M ′′ (expanding along the first row).

To understand a random evaluation of p(X), let us first set rows 2, . . . , d to random

values, and then setting row 1 to random values.

Pr
A

[p(A) 6= 0] ≥ Pr[x11M
′
1 + · · ·+ x1dM

′
d +M ′′ 6= 0 | some M ′

i 6= 0]

×Pr[some M ′
i 6= 0]

Note that once we have set rows 2, . . . , d to random values, p(X) reduces to a linear polyno-

mial in {x11, . . . , x1d}. Further, a random evaluation of any non-constant linear polynomial

93

is zero with probability exactly
(

1− 1
q

)
. Hence,

Pr
A

[p(A) 6= 0] ≥ Pr[x11M
′
1 + · · ·+ x1dM

′
d +M ′′ 6= 0 | some M ′

i 6= 0]

×Pr[some M ′
i 6= 0]

=

(
1− 1

q

)
· Pr[some M ′

i 6= 0].

Now comes Koutis’ Trick: the term
(

1− 1
q

)
· Pr[some M ′

i 6= 0] is exactly the probability

that x11M
′
1 + · · ·+ x1dM

′
d is non-zero! Hence,

Pr
A

[p(A) 6= 0] = Pr[x11M
′
1 + · · ·+ x1dM

′
d +M ′′ 6= 0]

≥ Pr[x11M
′
1 + · · ·+ x1dM

′
d 6= 0]

= Pr

[(∑
i:Row1∈Mi

ciMi

)
6= 0

]
.

which is just the linear combination obtained by only considering those minors that contain

the first row. Repeating this process for other rows/columns until only one minor remains,

we have

Pr
A

[p(A) 6= 0] ≥ Pr
A

[det(A) 6= 0] =
q − 2

q − 1
(by Proposition 10.7).

Exercise 10.2 [Proving Proposition 10.7] Let {qn} be a sequence of non-negative reals

such that
∑
qn converges to some s < 1. Show that

∞∏
i=1

(1− qn) ≥ 1− s.

Use this to infer that the probability that a random n×n matrix A over Fq is invertible,

which is exactly(
1− 1

q

)
· · ·
(

1− 1

qn

)
,

is at least 1/4.

94

Exercise 10.3 [Proving Proposition 10.7 for Permn] Show that

Pr
A∈Fn×nq

[Perm(A) = 0] ≤ 1

qn
+

1

qn−1
+ · · ·+ 1

q

=
1

q − 1

(
1− 1

qn

)
.

Hint: Use Koutis’ trick (Lemma 10.6).

10.4 Lower bound for Sym≤d

The goal of this section would be to get a lower bound on Γ
[GK]
k;A (Sym≤d), where n = d2, when

k is suitably chosen. In this case, we shall set τ = α · d log n for a constant α > 0 that shall

be chosen shortly, and k = d/2. The main lemma of this section would be the following.

Lemma 10.8. Consider the polynomial Sym≤d with n = d2. If k = d/2 and A = Fnq \E with

|E| ≤ exp(−ω(d log q)) · qn, then

Γ
[GK]
k;A (Sym≤d) ≥

(
n

d/2

)
We shall prove this lemma shortly but let us first see how this implies Theorem 10.2.

Proof of Theorem 10.2. Assume that the polynomial Sym≤d can be computed by a ΣΠΣ

circuit of size s ≤ exp(τ/10) = exp((α/10) · d log n). Then, by Lemma 10.4, there is a set E
with |E| ≤ exp(−Ω(d log n)) · qn � exp(−ω(d log q)) · qn such that

Γ
[GK]
k;A (Sym≤d) ≤ s · qα·d logn

where k = d/2 and A = F n
q \ E . On the other hand, from Lemma 10.8 we get

Γ
[GK]
k;A (Sym≤d) ≥

(
n

d/2

)
≥ 2(d/4) log d

These two bounds force s ≥ exp(Ωq(d log d)) = exp(Ωq(d log n)).

We only need to prove Lemma 10.8 to complete the proof.

95

10.4.1 Proof of Lemma 10.8

We have set k = d/2 and are hence studying the evaluations partial derivatives of Sym≤d

of order d/2 on points inA. Let us first focus on the partial derivatives as formal polynomials.

Consider the following matrix M where each rows is indexed by a partial derivative of

order k = d/2, columns indexed by monomials of degree d−d/2 = d/2 and the corresponding

entry being 1 if that monomial occurs in partial derivative of Sym≤d and zero otherwise. That

is, each row of this matrix is a partial derivative of Sym≤d written down via its coefficients.

Now notice that if we have a partial derivative corresponding to a subset S, a monomial

corresponding to a subset T would be present in ∂S(Sym≤d) if and only if |T | ≤ d/2 and

S ∩ T = ∅. These
(
n
d/2

)
×
(

n
≤d/2

)
matrices have been well studied and are called Disjointness

Matrices. The following lemma of Razborov [Raz87] shows that these matrices are full-rank.

Lemma 10.9 (Rank of disjointness matrices [Raz87]). Let D be a
(
n
d

)
×
(
n
≤d

)
matrix such

that

D(S, T) =

1 if S ∩ T = ∅

0 otherwise

Then, over any field F, the matrix D has rank
(
n
d

)
.

Thus stated differently, this says that the (d/2)-th partial derivatives of Sym≤d are linearly

independent as formal polynomials over any field F. We would like to use this to infer that

the matrix Mk(f ;A) is also full-rank as long as A = Fnq \ E and |E| ≤ exp(−ω(d log q)) · qn.

Consider any linear combination of (d/2)-th order partial derivatives of Sym≤d. We know

that this is a non-zero multilinear polynomial of degree d/2. The following exercise shows

that non-zero multilinear polynomials of low-degree must have many non-zero evaluations.

Exercise 10.4 [Schwartz-Zippel over small fields] Show that, over any field Fq, any non-

zero multilinear n-variate polynomial f of degree d evaluates to a non-zero value on at

least qn−d points of Fnq .

Thus, any linear combination of partial derivatives must be non-zero on at least q−d/2·qn =

exp(−(d/2) log q) · qn points. Since |E| < exp(−ω(d log q) · qn, we cannot have thrown away

all the non-zero evaluations. Thus, for every linear combination of partial derivatives, there

96

must exist some point a ∈ A on which it evaluates to a non-zero value. In other words, no

linear combination of rows of Mk(Sym≤d;A) yields the zero row and hence is full rank.

97

Part IV

Multilinear and non-commutative

models

98

Chapter 11

The Partial Derivative Matrix

In this chapter, we shall look at a powerful technique introduced by Nisan [Nis91] that has

been instrumental in many lower bound proofs and also in constructing polynomial identity

tests. Nisan [Nis91] introduced the notion of the partial derivative matrix in the context of

proving lower bounds for non-commutative ABPs, and we shall see that first.

11.1 Non-commutative models of computation

A non-commutative polynomials over many variables, denoted by F {x1, . . . , xn}, are formal

polynomials over the variables wherein the variables do not commute. Hence, a polynomial

x1x2 − x2x1 in F {x1, . . . , xn} is a non-zero polynomial. They naturally can be added or

multiplied but the order in which the variables are multiplied become important. Hence,

(x1 + x2)(x1 + x2) = x2
1 + x2x1 + x1x2 + x2

2 6= x2
1 + 2x1x2 + x2

2

Each monomial is no longer identifiable by just an exponent vector but is rather a word on

the set {x1, . . . , xn}.
In this space, we can continue to talk about arithmetic circuits or algebraic branching

programs where we always keep track of the order of variables multiplied. In arithmetic

circuits or formulas, every × gate has labelled left and right children. In an algebraic

branching program, the weight of a path from source to sink is the product of the edge

weights in the order from left to right.

Nisan [Nis91] asked the question of whether we can prove lower bounds in this more re-

stricted model of computation. In his paper, he introduced the complexity measure via the

99

Partial Derivative Matrix, and used it to not just prove lower bounds but exactly calculate

the size of the smallest non-commutative ABP computing a homogeneous polynomial f .

Exercise 11.1 Show that, given any non-commutative ABP of size s computing a ho-

mogeneous non-commutative polynomial of degree d, we can construct a homogeneous

non-commutative ABP (edge weights are homogeneous linear forms) of size at most

s · poly(d) computing f .

11.1.1 Partial derivative matrix for non-commutative ABPs

Definition 11.1 (Nisan’s partial derivative matrix [Nis91]). Let f be an n-variate homoge-

neous non-commutative polynomial of degree d. For any i ∈ [d], the matrix Mi(f) is defined

follows:

The matrix Mi(f) has ni rows and nd−i columns, indexed by monomials (or

words) of length i and d− i respectively. The entry at (m1,m2) is the coefficient

of the monomial (or word) m1 ·m2 in f . ♦

Theorem 11.2 ([Nis91]). For any n-variate homogeneous non-commutative polynomial f

of degree d, the smallest non-commutative ABP that computes f must have size

rank(M0(f)) + rank(M1(f)) + · · ·+ rank(Md−1(f)).

The above is not an estimate; Nisan’s result says that the sum of the ranks of the partial

derivative matrix is exactly the size of the smallest ABP. The proof of this theorem is not

hard, especially once you know what the answer is. We shall prove part of the proof to show

that the sum of the ranks is a lower bound for the size of the smallest ABP, and leave the

other direction as an exercise.

Proof. Let C be the smallest non-commutative ABP computing the polynomial f . We shall

show that number of vertices in layer i is at least the rank of Mi(f).

Suppose v1, . . . , vr are the vertices in the i-th layer, and let s be the unique source node

and let t be the unique sink node. For each i ∈ [r], let gi be the non-commutative polynomial

computed by the restricted ABP if we consider s as the source and vi as the sink. Similarly,

let hi be the non-commutative polynomial computed by the restricted ABP with vi as source

and t as the sink. Then, f = g1h1 + · · · + grhr. Since the ABP is homogeneous, each gi

100

is a homogeneous non-commutative polynomial of degree i and each hi is a homogeneous

non-commutative polynomial of degree d− i. Now consider the matrix the ni× r matrix G,

with rows indexed by monomials (or words) of degree i and columns indexed by [r], with the

(m, i) entry being the coefficient of m in gi. Similarly, let H be the r × nd−i matrix, with

rows indexed by [r] and columns indexed by monomials (or words) of degree d− i, with the

(j,m) entry being the coefficient of m in gj.

Subclaim 11.3. Mi = G ·H.

With this claim, it follows that the rank of M is a lower bound for r.

Exercise 11.2 Complete the proof of Subclaim 11.3, and also show that the bound is

tight to show the other direction of Theorem 11.2.

11.1.2 An explicit hard polynomial

To complete the proof, we just need to construct an explicit polynomial for which one of

the Mi’s has large rank. A natural attempt is to make Md/2 to be full-rank by making it

something like the identity matrix. Indeed, if we choose the polynomial to be the double

polynomial Doubd defined as

Doubd :=
∑

w∈{x1,...,xn}d/2
xwxw

or the Palindrome polynomial Pald defined as

Pald :=
∑

w∈{x1,...,xn}d/2
xwxreverse(w),

then clearly rank(Md/2) is nd/2 giving the required lower bound.

Theorem 11.4 ([Nis91]). Any non-commutative ABP computing the polynomial Doubd or

Pald must have size nΩ(d).

As an added bonus, it is easy to see that Pald can in fact be computed by a non-

commutative circuit of size poly(n, d). Thus, this in fact yields an exponential separation

between non-commutative ABPs and non-commutative circuits.

An important point to also observe is that this lower bound implies that an analogue of

the depth reduction of [VSBR83] is simply not possible in the non-commutative world.

101

11.2 Applications in the commutative world

There are some instances in the commutative world where computation behaves like a non-

commutative computation. An example of this is the class of what are called read-once

oblivious algebraic branching programs (ROABP), first defined by Forbes and Shpilka [FS13].

Definition 11.5 (Read-once oblivious algebraic branching programs (ROABP) [FS13]). An

ABP (over commuting variables) is said to be an read-once oblivious algebraic branching

program (ROABP) in the order (x1, . . . , xn) if it has the property that all edge weights between

layer i and layer i+ 1 are univariate polynomials in xi. ♦

As seen in Chapter 2, if f is computable by an ROABP of width w, then f can be

equivalently expressed as one entry of an iterated product of univariate matrices. That is,

f = (A1(x1) · · ·An(xn))(1,1)

where each Ai(xi) is a w × w matrix (where w is the width of the ABP) with entries as

univariate polynomials in xi.

In some sense, this is essentially a non-commutative computation that is masquerading

as a commutative computation since the variables are multiplied in the same order. Thus,

the partial derivative matrix that was used in the non-commutative ABP lower bound can

also be used here. We shall abuse notation and use the following definition of the partial

derivative matrix that is more useful for the commutative world.

Definition 11.6 (Partial derivative matrix for a partition). For any given partition of vari-

ables X = Y tZ, define the partial derivative matrix MY,Z(f) to be the matrix described as

follows — the rows are indexed by monomials in Y , columns indexed by monomials in Z,

and the (i, j)-th entry of the matrix is the coefficient of the monomial mi(Y) ·mj(Z) in f .

Further, we shall call a polynomial f to be full-rank if MY,Z(f) is full-rank. ♦

MY,Z(f) = Monomials in Y

Monomials in Z

mZ

mY

coefff (mY ·mZ)

The following observation is a an easy exercise.

102

Lemma 11.7. Suppose a polynomial f is can be computed as an entry in a product of w×w
univariates matrices in the order (x1, . . . , xn), that is

f = (A1(x1) · · ·An(xn))(1,1) .

Then, for every i ∈ [n], for the partition Y = {x1, . . . , xi} and Z = X \ Y we have

rank(MY,Z(f)) ≤ w.

Furthermore, the converse also holds.

Hence, the rank of the partial derivative matrix can be used to prove lower bounds for

ROABPs.

Exercise 11.3 What is the rank of the partial derivative matrices for the following

polynomials?

• The elementary symmetric polynomials Symd, under any partition.

• Any Σ∧Σ circuit of size s, under any partition.

• Detn and Permn under the partition X = Y t Z where Y the variables from the

first n/2 rows.

• The polynomial (x1 + x2) · · · (x2n−1 + x2n) under the partition X = Y t Z with

Y = {x1, . . . , xn}.

• The polynomial (x1 + x2) · · · (x2n−1 + x2n) under the partition X = Y t Z with

Y = {x1, x3, x5, . . . , x2n−1}.

11.2.1 An evaluation perspective

For this section, let us assume that we are working with a field that is large enough. The

following is an alternative way to study the rank of the partial derivative matrix under some

partition. It is essentially the same, but sometimes is easier to reason with and we shall see

a few examples in this chapter.

Definition 11.8 (Evaluation dimension). Let X = Y t Z. The evaluation dimension of a

polynomial f , with respect to Y tZ, denoted by evalDimY,Z(f), is defined as the rank of the

103

following polynomials

evalDimY,Z(f) = rank
({
f(a, Z) ∈ F[Z] : a ∈ F|Y |

})
.

In other words, evalDimY,Z(f) of the space of partial evaluations of f by setting Y to arbitrary

field constants. ♦

The following lemma is easy to verify.

Lemma 11.9. Over any field F, we always have that evalDimY,Z(f) ≤ rank(MY,Z(f)). If

|F| ≥ deg(f), then

evalDimY,Z(f) = rank(MY,Z(f)).

To illustrate why this perspective is convenient, we shall take one example from Exer-

cise 11.3 and compute the evaluation dimension of a Σ∧Σ circuit.

Claim 11.10. Let f =
∑s

i=1 `
d
i . Then under any partition X = Y t Z, we have that

evalDimY,Z(f) ≤ (d+ 1) · s.

Proof. It suffices to prove that the evaluation dimension of a single `d is at most (d+ 1) and

the lemma would follow due to sub-additivity. Say ` = (a0 + a1x1 + · · · + anxn). For any

partition X = Y t Z, let `Y =
∑

i∈Y aixi and `Z = ` − `Y so that ` = `Y + `Z . Now if we

take a partial evaluation of the Y variables to field constants, the resulting polynomial is

(α + `Z)d = αd + αd−1

(
d

1

)
`Z + · · · + `dZ .

And as we change the evaluation, the only change in the above equation is the value of α.

Hence it is clear that the rank of this space of polynomials is no more than (d + 1) as it is

spanned by

{
1, `Z , . . . , `

d
Z

}
.

Exercise 11.4 Repeat Exercise 11.3 with evaluation dimension.

104

Exercise 11.5 Suppose you have a degree d polynomial f so that dim ∂≤d(f) is at most

r, that is, there are at most r linearly independent partial derivatives of f . What can

you say about evalDimY,Z(f) under any partition?

What about the converse?

The notion of partial derivative matrix is very useful and in the next chapter we shall

see how it can be used to prove lower bounds for multilinear models.

105

Chapter 12

Hardness amplification for

non-commutative circuits

In Chapter 11, we saw exponential lower bounds for the non-commutative formulas and

ABPs. As mentioned earlier, in the commutative world, this would have immediately yielded

lower bounds for circuits as well due to the depth reduction results (Theorem 5.8). However

this does not happen in the non-commutative world, and proving lower bounds for non-

commutative circuits has remained elusive.

In this chapter, we shall see a beautiful result of Carmasino, Impagliazzo, Mihajlin and

Lovett [CILM18] that show that even mildly super-linear lower bounds for a family of non-

commutative polynomials can be amplified to obtain much stronger lower bounds.

Theorem 12.1 ([CILM18]). Suppose there is some ε > 0 for which we have an explicit family

of non-commuting polynomials {fn} (with fn being an n-variate non-commuting polynomial

of degree poly(n)) such that fn requires non-commutative circuits of size n(ω/2)+ε.

Then, for every c ≥ 1, there is an explicit family {gn} (with gn being an n-variate

polynomial of degree poly(n)) that requires non-commutative circuits of size nc.

In fact, the conclusion can be strengthened if the initial polynomial family {fn} is a

constant degree family.

Theorem 12.2 ([CILM18]). Suppose there is some ε > 0 for which we have an explicit

family of non-commuting constant degree polynomials {fn} (with fn being an n-variate

non-commuting polynomial of degree d, which is a constant) such that fn requires non-

commutative circuits of size n(ω/2)+ε.

106

Then, for some δ ≥ 0, there is an explicit family {gn} (with gn being an n-variate

polynomial of degree poly(n)) that requires non-commutative circuits of size exp(nδ).

In both the above theorems, ω refers to the exponent of matrix multiplication. For

simplicity, we shall just work with this being replaced by 3. Hence, the above theorems say

that if we can get lower bounds of n1.5+ε, then this can be amplified.

12.1 Intuition

Both these theorems go via a clever hardness-preserving variable reduction. Formally, we will

start with a polynomial f(x1, . . . , xn) ∈ F 〈x1, . . . , xn〉 and transform this to a polynomial

g(y1, . . . , ym) ∈ F 〈y1, . . . , ym〉 where m � n. This transformation would be obtained by

replacing each xi by some hi(y1, . . . , ym) for some relatively simple hi’s (in fact, they will

just be monomials).

Clearly, if f has a small circuit, then so does g (since each of the hi’s are simple). The key

point would be that a rough converse also would hold. That is, if someone provided a size s

non-commutative circuit for g, then there is a circuit of size s′ (which is not-much-larger-than

s) that computes f . As a contrapositive, if f cannot be computed by circuits of size s, then

g cannot be computed by circuits of size s′. Why is this a hardness amplification? Notice

that m� n; hence s′ as a function of m could be way larger than s as a function of n.

The proofs of both the theorems essentially repeat the above transformation as many

times as possible. In the general case, we can repeat this any constantly many times and

hence this would eventually yield Theorem 12.1. In the setting when the polynomial family

has constant degree, we can repeat this more times and that yields Theorem 12.2.

We will see the details in the rest of the chapter.

12.2 The hardness-preserving variable reduction

Suppose f ∈ F 〈x1, . . . , xn〉 is a polynomial of degree d. Let m = dn1/3e. To each of

the variables xi, we shall assign a unique non-commutative monomial yi1yi2yi3 . Define the

polynomial g obtained from f via by substituting the associated monomial for xi:

Amp3(f) := g(y1, . . . , ym) := f(y11y12y13 , . . . , yn1yn2yn3)

Clearly, g is an m-variate non-commutative polynomial with deg g ≤ 3d.

107

Lemma 12.3 (Hardness-preserving reduction). Let f be an n-variate non-commutative poly-

nomial. Suppose there is a non-commutative circuit of size at most s that computes Amp3(f).

Then, there is a non-commutative circuit of size at most s′ = C · s ·nω/3 for a universal con-

stant C.

We shall assume the above lemma for now and finish the proofs of Theorem 12.1 and The-

orem 12.2. We shall define the following operator which applies this amplification multiple

times.

Amp
(k)
3 (f) := Amp3 ◦Amp3 ◦ · · · ◦ Amp3︸ ︷︷ ︸

k times

(f).

Corollary 12.4 (Iterative hardness-preserving reduction). Let f be an n-variate non-commutative

polynomial, of degree d, with n = m3k for some positive integers m and k. Let g(y1, . . . , ym) =

Amp
(k)
3 (f), an m-variate non-commutative polynomial of degree 3kd. If g can be computed

by a circuit of size s, then f can be computed by a circuit of size at most s · nω/2 · Ck where

C is the universal constant in Lemma 12.3

Proof. By repeated applications of Lemma 12.3 yields that f can be computed by a circuit

of size at most

s′ = s · Ck ·
(
mω ·m3ω · · ·m3k−1ω

)
= s · Ck ·mω·(3k−1)/(3−1)

≤ s · Ck ·m(ω/2)·3k = s · Ck · nω/2.

Proof of Theorem 12.1 and Theorem 12.2. Let g = Amp
(k)
3 (f) for a k that shall be fixed

shortly. If n = m3k of degree d, then g is an m-variate polynomial of degree 3k · d. Corol-

lary 12.4 states that if f requires circuits of size Ω(n(ω/2)+ε) then g(y1, . . . , ym) requires

circuits of size Ck · nε.

• (Proof of Theorem 12.1) Set k large enough constant so that 3k · ε > c. Then deg(g) =

3kd = poly(n) = poly(m) as k is a constant. Also, g requires circuits of size Ω(nε) =

Ω(mc) by the choice of k.

• (Proof of Theorem 12.2) Pick the smallest k such that 3k ·k > log n; let m = n1/3k and

g = Amp
(k)
3 (f). Note that for this choice of k, we have k > logm. With this choice of

108

k and since d = deg(f) is a constant, we have

deg(g) = 3k · d ≈ 3(logn)/3k · d = 3logm · d = poly(m).

Also, g requires circuits of size at least

Cknε = m3k·εCk ≈ m3k·ε+logC = Ω(exp(mδ))

for some δ > 0.

In the rest of the chapter we shall see how to prove Lemma 12.3.

12.3 Proof of the main lemma

We are provided a circuit of size s that computes Amp3(f) and we want to use that to find

a circuit for f . Basically, what we need to do is undo this monomial transformation.

Intuitively, we want to say that there shouldn’t be a circuit much better than actually

computing f and doing this transformation. Of course, given such a circuit for Amp3(f),

we can just pull out a circuit for f . The main idea is that given any circuit for g, we can

always structure the circuit in such a way that it really does look like a circuit computing f

and then doing the monomial substitution.

We will first perform a partial homogenisation operation, very similar to Lemma 5.2 but

much weaker. This would be the first step towards at least ensuring that each gate computes

a polynomial of degree divisible by 3.

Definition 12.5 (A (mod 3)-homogeneous circuit). A circuit C is said to be (mod 3)-homogeneous

if every gate is labelled by a pair (i, j) ∈ {1, 2, 3}2 satisfying the following conditions:

• All leaves will be labelled by some (i, j) such that j = i + 1 mod 3 if it is a variable,

and by some (i, i) if the leaf is a constant.

• If g is a + gate with label (i, j), then all its children also have label (i, j).

• If g = g1 × g2 with label (i, j) then there must be some k ∈ {0, 1, 2} such that g1 has

label (i, k) and g2 has label (k, j). ♦

Intuitively, each gate’s label of (i, j) says that its contribution will always be from a

position that is i mod 3 and until j mod 3. We leave the proof of the following observation

as an easy exercise.

109

Observation 12.6. Any non-commutative polynomial that can be computed by a non-commutative

circuit of size s can be equivalently computed by a (mod3)-homogeneous non-commutative

circuit of size at most 9s.

Let us see what would happen if we started with the trivial circuit for Amp3(f) obtained

from a circuit for f and applying the monomial substitution. The resulting circuit is already

(mod3)-homogeneous, and every gate has label (1, 1) (and we are thinking of leaves as now

being monomials; they also have label (1, 1) then). This is the state we want to get to from

an arbitrary circuit. The partial homogenisation is one step towards it but there are all

kinds of labels for the gates and we want to fix that.

The beautiful idea of Carmosino et al [CILM18] is to replace each gate of the circuit by

a m ×m matrix of gates, such that each entry of this matrix would have label (1, 1). We

then want to simulate all additions and multiplications as matrix multiplications. We will

need to build some notation.

Definition 12.7 (Division operators). For a polynomial f ∈ F 〈y1, . . . , ym〉 and a variable

y ∈ {y1, . . . , ym}, we shall define the left and right division operators as

[y−1]f =
∑

w∈{y1,...,ym}∗
w=yw′

coeffw(f) ·w′

f [y−1] =
∑

w∈{y1,...,ym}∗
w=w′y

coeffw(f) ·w′

In words, [y−1]f divides from the left by y (and monomials that do not begin with y are zeroed

out) and f [y−1] divides from the right. ♦

We now define an operator that maps every labelled gate of the circuit to a matrix

of polynomials each of whose entries are (mod3)-homogeneous. We’ll call it the glacial

operator after the following sentence in [CILM18]:

“This process is like a glacial movement during the ice age. An operator slides

over the circuit and then disappears, drastically changing the landscape behind

it.”

Definition 12.8 (The glacial operator). Let g be a gate in a (mod3)-homogeneous non-

commutative circuit C with label (a, b). Let g also denote the polynomial computed by the

gate.

110

The operator Φ(g) returns an m×m matrix of polynomials whose (i, j)-th entry is given

by the (a, b)-th entry of the following matrix: g g
[
y−1
j

]
gyj

yig yig
[
y−1
j

]
yigyj[

y−1
i

]
g
[
y−1
i

]
g
[
y−1
j

] [
y−1
i

]
g
[
y−1
j

]
 .

♦

What the above definition does is best described in plain words and a few examples. If g

is labelled (1, 1), then basically g is both start-aligned and end-aligned and the matrix Φ(g)

would just have g in every entry. If g is labelled (2, 2), then g “needs one symbol on the left

to be added” to become start-aligned and “needs one symbol on the right to be removed” to

become end-aligned. The (i, j)-th entry of Φ(g) then corresponds to yig[y−1
j], which aligns g

by adding yi on the left and removing yj on the right.

Observation 12.9. Let C be a (mod3)-homogenised circuit of size s. Suppose g is some

internal gate in g.

• If g = g1 + g2, then Φ(g) = Φ(g1) + Φ(g2) (matrix addition).

• If g = g1 × g2, then Φ(g) = Φ(g1)× Φ(g2) (matrix multiplication).

The proof of the above observation is a simple exercise and is left to the reader. Thus,

all we need to do for now is replace every gate g of C by the entries of Φ(g), all addition

and multiplication gates by matrix addition and matrix multiplication gates, and we would

have obtained our (mod3)-homogeneous circuit with each gate labelled with (1, 1)!

We start with the leaves of C which were computing variables. For any leaf `, observe

that Φ(`) would be an m×m matrix, each of whose entries is a monomial of degree exactly

3 or a constant. Thus, we can first compute Φ(`) for all the leaves `. If g = g1 ~ g2 is some

internal gate for which we need to compute Φ(g), and we have computed Φ(g1) and Φ(g2),

then we can compute the entries of Φ(g) by a suitable matrix addition/multiplication via

Observation 12.9.

And finally, each matrix addition and matrix multiplication of m ×m matrices can be

simulated1 by O(mω) usual additions and multiplications. Let us summarize this discussion

as a lemma.

1technically, it should be O(mω+ε) for every ε > 0... but meh.

111

Lemma 12.10 (Alignment lemma). Suppose f ∈ F 〈y1, . . . , ym〉 is a polynomial such that

every monomial of f has degree divisible by 3 and computable by a non-commutative circuit

C of size s. Then, there is a (mod3)-homogeneous circuit C ′, each of whose gates/leaves

are labelled by (1, 1), of size at most O(s ·mω)

Lemma 12.3 is a direct corollary of the above lemma as m = n1/3 and this completes the

proof of the hardness amplification for non-commtuative circuits.

Exercise 12.1 The main monomial transformation was replacing the n variables by

degree 3 monomials in n1/3 variables. Naturally, one can choose any r and replace each

of the n variables by degree r monomials in n1/r variables. How would these bounds

change for an arbitrary r?

112

Chapter 13

Lower bounds for multilinear models

Most of the polynomials that are studied usually, like those described in Chapter 2, are

multilinear. A natural question is whether or not multilinear polynomials can be computed

in a “multilinear fashion”. This is formalized by what the model of multilinear circuits, in a

way analogous to homogeneous circuits.

Definition 13.1 (Multilinear circuits). A circuit C is said to be multilinear if every gate of

the circuit computes a multilinear polynomial. A circuit is said to be syntactically multilinear

if for any g = g1 × g2, there is no variable that has a path to both g1 and g2. ♦

Note that syntactic multilinearity of course implies multilinearity as the definition forces

all gates to compute multilinear polynomials. However, we could have a setting where there

is a gate g = g1 × g2 where some variable x has a path to both g1 and g2 but it so turns out

that g1 is independent of x due to other cancellations. However, for arithmetic formulas, the

two notions are equivalent.

Exercise 13.1 Given any arithmetic formula Φ that is multilinear, show that it can be

converted to a formula Φ′ of size poly(Φ) that is syntactically multilinear.

(Imp.) Why does the same not work for multilinear circuits?

This section shall deal mainly with multilinear formulas so we may assume without loss

of generality that they are syntactically multilinear. Raz [Raz09] showed that multilinear

formulas computing the Detn or Permn must be of size nΩ(logn). The complexity measure

used by Raz also led to exponential lower bounds for constant depth multilinear circuits

[RY09] and super-linear lower bounds for syntactic multilinear circuits [RSY08]. Hrubeš and

Yehudayoff [HY11] then showed a super-polynomial lower bound homogeneous multilinear

formulas computing the elementary symmetric polynomial.

113

Although the lower bound of Hrubeš and Yehudayoff was subsequent to the results of Raz

and Yehudayoff [Raz09, RY09], we shall see their lower bound first which uses a suprisingly

simple complexity measure. For the non-homogeneous setting, the complexity measure used

here would also be the rank of the partial derivative matrix from Chapter 11. We shall start

off with a structural result whenever we are dealing with formulas, which builds on the depth

reduction for formulas Lemma 5.5.

13.1 Log-product representations for formulas

The following structural lemma shows that any multilinear formula can be converted in

to a small sum of log-product polynomials. The techniques of the following lemma can

also be used in other settings with minor modifications, and we shall encounter a different

version of this lemma later as well. These normal forms is from the survey of Shpilka and

Yehudayoff [SY10], and also from the result of Hrubeš and Yehudayoff [HY11].

Definition 13.2. A multilinear polynomial f ∈ F[X] is called a multilinear log-product

polynomial if f = g1 . . . gt and there exists a partition of variables X = X1 t · · · t Xt such

that

• gi ∈ F[Xi] for all i ∈ [t].

•
(

1
3

)i |X| ≤ |Xi| ≤
(

2
3

)i |X| for all i, and |Xt| = 1.

♦

Lemma 13.3. Let Φ be a multilinear formula of size s computing a polynomial p. Then p

can be written as a sum of (s+ 1) log-product multivariate polynomials.

Proof. Similar to Lemma 5.5, let v be a node in Φ such that set of variables Xv that it

depends on satisfies |X|
3
≤ |Xv| ≤ 2|X|

3
. If Φv is the polynomial computed at this node, then

f can be written as

f = Φv · g1 + Φv=0 for some g1 ∈ F[X \Xv].

where Φv=0 is the formula obtained by replacing the node v by zero. Note that the subtree

at the node v is completely disjoint from Φv=0. Hence the sum of the sizes of Φv and Φv=0

is at most s. Hence, g1 ∈ F[X \Xv] and |X|
3
≤ |X \Xv| ≤ 2|X|

3
. Inducting on the formulas

Φv and Φv=0 gives the lemma.

114

There are many variants of this formula depending on how you pick the node v in the

proof above. Here is another variant that find a node v based on degree rather than the

number of variables that it depends on. We state it here without proof but it follows exactly

as in the lines of Lemma 13.3.

Lemma 13.4. Let Φ be a homogeneous formula of size s computing a polynomial p of degree

d. Then p can be written as a sum of (s+ 1) log-product polynomials, that is,

p = f1 + · · ·+ fr with r ≤ s+ 1

where for each i ∈ [r], we have fi = fi1 · · · fi` satisfying

• each fij is homogeneous,

• (1/3)j · d ≤ deg(fij) ≤ (2/3)j · d,

• fi` = 1.

In particular, each fi factors into Ω(log d) non-trivial factors of geometrically decreasing

degrees.

Furthermore, if Φ was a multilinear formula to begin with, then so is the expression on

the RHS.

We shall see yet another variant of this trick later in this chapter but we have enough for

now to prove the lower bound of Hrubeš and Yehudayoff [HY11].

13.2 Lower bounds for homogeneous multilinear for-

mulas

The main theorem of this section would be the following.

Theorem 13.5 ([HY11]). Any homogeneous multilinear formula that computes the polyno-

mial Symd, for d ≤ n/2, must have size dΩ(log d).

The complexity measure used here would be ridiculously simple — just the number of

monomials! Surprisingly, this is enough to prove the lower bound for homogeneous multilin-

ear formulas. Before we get into the proof, we would need the following approximation for

the binomial coefficient. This follows from Stirling’s approximation of n!.

115

Lemma 13.6 (Stirling’s approximation of
(
n
k

)
). For n ≥ 3k/2, the following(

1

3
√
k

)
·
(

nn

kk · (n− k)n−k

)
≤

(
n

k

)
≤

(
1√
k

)
·
(

nn

kk · (n− k)n−k

)

Proof of Theorem 13.5. If there is a size s homogeneous multilinear formula computing

Symd, then by Lemma 13.4 we have an expression of the form

Symd =
s+1∑
i=1

fi1 · · · fi`

with ` = Ω(log d). We shall show that each multilinear term of the form fi1 · · · fi`, with geo-

metrically decreasing degrees, can contribute at most d−Ω(log d) ·
(
n
d

)
monomials. This would

immediately imply that s = dΩ(log d).

Consider a term of the form f1 · · · f`. Since the degrees drop geometrically, we may

assume without loss of generality that ` = Ω(log d) and deg(fi) ≥
√
d (by just multiplying

all polynomials of smaller degree together). This is a homogeneous multilinear expression so

let deg(fi) = di and let fi depend on the variables Xi. If ni = |Xi|, then each fi has at most(
ni
di

)
monomials. Hence, the total number of monomials from this term is at most(
n1

d1

)
· · ·
(
n`
d`

)
.

All that’s left to do is show that this is significantly smaller than
(
n
d

)
.

Lemma 13.7 ([HY11]). Let n ≥ 2d. For any set of non-negative integers satisfying n1 +

· · ·+ n` = n and d1 + · · ·+ d` = d, we have(
n1

d1

)
· · ·
(
n`
d`

)
≤ 3

√
d

d1 · · · d`
·
(
n

d

)
The theorem immediately follows from this lemma as each di ≥

√
d and there are Ω(log d)

of them.

Before we prove this theorem, let us quickly look at the simpler case when d = n/2. In

116

that case,
(
n
d

)
≈ 2n/

√
n and the LHS is clearly upper bounded as(

n1

d1

)
· · ·
(
n`
d`

)
≤ 2n1+···+n`

√
n1 · · ·n`

giving us a similar bound. The case of general d requires a bit more work but is quite natural

(once you know it is true).

Proof. [of Lemma 13.7] Without loss of generality, we may assume that ni ≥ 2di for all i.

We are trying to understand the following distribution:

If we pick d elements out of n elements, what’s the probability that we pick d1

elements from the first n1, and d2 from the next n2 ... etc.

The first step is to ask, for fixed values of n1, . . . , n`, what values of d1, . . . , d` maximize this

probability. Intuitively, each di ought to be proportional to ni as that is what we would get

in expectation. In the perfect regime where n = α · d and ni = α · di for each i ∈ [`], we can

now use the approximation from Lemma 13.6 to get(
n

d

)
≥

(
1

3
√
d

)
·
(

nn

dd · (n− d)n−d

)
=

(
1

3
√
d

)
·
(

dn · αn

dd · dn−d · (α− 1)n−d

)
=

(
1

3
√
d

)
·
(

αn

(α− 1)n−d

)
and

(
ni
di

)
≤

(
1√
di

)(
αni

(α− 1)ni−di

)
=⇒

(
n1

d1

)
· · ·
(
n`
d`

)
≤ 3

√
d

d1 · · · d`
·
(
n

d

)
To complete the proof, we just have to show that

(
n1

d1

)
· · ·
(
n`
d`

)
is maximized when ni/di ≈

n/d. To do this, let us consider a term
(
n1

d1

)
·
(
n2

d2

)
with d1/n1 � d2/n2 and show that(

n1

d1−1

)
·
(
n2

d2+1

)
is larger. This is easy to see because(

n1

d1−1

)
·
(
n2

d2+1

)(
n1

d1

)
·
(
n2

d2

) =
d1 · (n2 − d2)

(n1 − d1 + 1) · (d2 + 1)

=

(
n2+1
d2+1

)
− 1(

n1+1
d1

)
− 1

117

> 1.

This is still a little incomplete as this ensures that the product is maximized when di is as

close as possible to d · (ni/n) but perhaps not quite exactly equal. This can be handled with

some minor1 changes in the calculation above. (Lemma 13.7)

The theorem follows immediately from this lemma.

13.3 Lower bounds for (non-homogeneous) multilinear

formulas

Homogeneity is crucially used in the proof of Theorem 13.5. A simple example is just the

term (x1 + 1) · · · (xn + 1) which generates every possible multilinear monomial rendering a

sparsity based complexity measure completely useless.

However, once again, we can use the partial derivative matrix that we studied in Chap-

ter 11 here. In this section, we shall see the lower bounds of Raz [Raz09], and the lower

bound of Raz and Yehudayoff [RY09].

Intuition

A natural first step is to try the simpler task of proving lower bounds for depth-3 multilinear

circuits.

f = `11 . . . `1d + · · ·+ `s1 . . . `sd

The task is now to construct a measure Γ such that Γ(`1 . . . `d) is small whenever each `i is a

linear polynomial and different `i’s are over disjoint sets of variables. Consider the simplest

case of f = (a1 + b1x)(a2 + b2y). An observation is that the coefficients of f are given by

the 2× 2 matrix obtained as [a1 b1]T [a2 b2] =

[
a1a2 a1b2

a2b1 b1b2

]
. In other words, a polynomial

f = a0 +a1x+a2y+a3xy factorizes into two variable disjoint factors if and only if the matrix[
a0 a1

a2 a3

]
has rank 1. This is another way of reading f as a non-commutative polynomial,

and this is precisely the partial derivative matrix of f with respect to {x, y} = {x} t {y} as

1‘minor’ if one is willing to afford some loss in parameters. But it is also possible to prove the statement
claimed with some more work.

118

seen in Chapter 11.

We recall the definition of the partial derivative matrix with respect to X = Y tZ from the

picture:

MY,Z(f) = Monomials in Y

Monomials in Z

mZ

mY

coefff (mY ·mZ)

We shall use Γ
[Raz]
Y,Z (f) to denote the rank of MY,Z(f).

Here are some basic properties of the partial derivative matrix which would be extremely

useful in later calculations.

Observation 13.8 (Sub-additivity). For any partition X = Y tZ and any pair of multilinear

polynomials f and g in F[X] we have Γ
[Raz]
Y,Z (f + g) ≤ Γ

[Raz]
Y,Z (f) + Γ

[Raz]
Y,Z (g).

Proof. Follows from the linearity of the matrix.

Observation 13.9 (Multiplicativity). If f1 ∈ F[Y1, Z1] and f2 ∈ F[Y2, Z2] with Y = Y1 t Y2

and Z = Z1 t Z2, then

Γ
[Raz]
Y,Z (f1 · f2) = Γ

[Raz]
Y1,Z1

(f1) · Γ
[Raz]
Y2,Z2

(f2).

Proof. It is not hard to see that MY,Z(f1 · f2) is the tensor product MY1,Z1(f1)⊗MY2,Z2(f2),

and the rank of a tensor product of two matrices is the product of the ranks.

Observation 13.10 (Multiplication by univariates). For any f ∈ F[Y, Z] and any g ∈ F[Y],

if F is large enough then we have that Γ
[Raz]
Y,Z (g · f) ≤ Γ

[Raz]
Y,Z (f).

By symmetry, the same is true when g ∈ F[Z].

Proof. The evaluation dimension of g · f is at most the evaluation dimension of g as any

partial evaluation (by evaluating Y) of g · f is a scalar times a partial evaluation of g. The

observation follows from Lemma 11.9.

119

Observation 13.11 (A trivial bound). For any multilinear polynomial f , we have Γ
[Raz]
Y,Z (f) ≤

2min(|Y |,|Z|).

Proof. The number of rows is 2|Y | and number of columns is 2|Z|, and hence the rank is

upper-bounded by the minimum.

Let us get back to lower bounds for multilinear models, and attempt to use Γ
[Raz]
Y,Z (f)

defined above. Unfortunately, there are examples of simple polynomials like f = (y1 +

z1) . . . (yn + zn) with Γ
[Raz]
Y,Z (f) = 2n. Raz’s idea here was to look at Γ

[Raz]
Y,Z (f) for a random

partition, and show that with high probability the rank of the partial derivative matrix is

far from full. As a toy example, we shall see why this has the potential to give lower bounds

for depth-3 multilinear circuits.

Lemma 13.12. Let f(X) = `1 . . . `d be an n-variate multilinear polynomial. If X = Y t Z
is a random partition with |Y | = |Z| = |X|/2, then with high probability we have

Γ
[Raz]
Y,Z (f) ≤ 2|X|/2 · 2−|X|/16.

It is to be noted that we should expect a random polynomial to be full-rank with respect

to any partition, so the measure Γ
[Raz]
Y,Z (f) is expected to be 2|X|/2 which should yield a lower

bound of 2Ω(|X|).

Sketch of Proof. Without loss of generality we can assume that each `i depends on at least

two variables as removing the `i’s that depend on just one variable does not alter Γ
[Raz]
Y,Z (f)

with respect to any partition. Let |X| = n.

Using Observation 13.9, Γ
[Raz]
Y,Z (f) ≤ 2d and hence if d < n/3 then we are done. Hence

assume that d ≥ n/3. By a simple averaging argument, there must hence be at least d/4 of

the `i’s that depend on at most 3 variables; we shall refer to these as the small `i’s.

Since the partition is chosen at random, on expectation a quarter of the small `i’s would

have all its variables mapped to either Y or Z, hence not contributing to Γ
[Raz]
Y,Z (f). Therefore,

with high probability,

Γ
[Raz]
Y,Z (f) ≤ 2d · 2−d/16 ≤ 2n/2 · 2−n/16.

More generally, if f = g1(X1) . . . gt(Xt) where the Xi’s are mutually disjoint, then a

random partition is very unlikely to partition all the Xi’s into almost equal parts. This

120

naturally calls for using the multilinear log-product representation from Lemma 13.3 for the

case of multilinear formulas. The rest of this section would be proof of Raz’s wonderful result

[Raz09].

Theorem 13.13 ([Raz09]). Any multilinear formula computing Detn or Permn must be of

size nΩ(logn).

The proof would be as outlined. If f is computable by a size s multilinear formula, then

by Lemma 13.3 we know that f admits a log-product representation:

f =
s+1∑
i=1

fi1 · · · fi`

Using this, we shall first obtain an upper-bound on Γ
[Raz]
Y,Z (f) for a random partitionX = Y tZ

by showing that any single log-product is far from full-rank. Finally, for Detn or Permn, we

shall prove a lower bound on Γ
[Raz]
Y,Z for most partitions and that would complete the proof.

In the original paper of [Raz09], Raz considered balanced partitions X = Y t Z with

|Y | = |Z| = |X|/2 but this complicates issues because each variables are not independently

assigned to Y or Z. However, there is a slightly simpler analysis when we just independently

assign each variable to Y or Z and deal with the possible imbalance later on. This trick was

communicated to us by Srikanth Srinivasan.

13.3.1 Log-products are far from full-rank on a random partition

The main technical part of the proof is to show that log-product multivariate polynomials

are far from full-rank under a random partition of variables. This would let us show that a

sum of log-product multivariate polynomials cannot be full rank unless it is a very large sum.

Main idea: Suppose f = g1 . . . gt where each gi ∈ F[Xi]. Let X = Y t Z be a

random partition, obtained by assigning each variable x ∈ X independently to Y or Z with

probability 1/2 each. Let Yi = Y ∩Xi and Zi = Z ∩Xi and say di =
∣∣∣ |Yi|−|Zi|2

∣∣∣ measure the

imbalance between the sizes of Yi and Zi. We shall say Xi is k-imbalanced if di ≥ k. Let

bi = |Yi|+|Zi|
2

= |Xi|
2

.

Suppose the partition was such that |Y | = |Z| (as considered originally by Raz), then by

Observation 13.9 we know that

Γ
[Raz]
Y,Z (f) = Γ

[Raz]
Yi,Zi

(g1) . . .Γ
[Raz]
Yi,Zi

(gt)

121

≤ 2min(|Y1|,|Z1|) · · · · 2min(|Yt|,|Zt|)

= 2b1−d1 · · · 2bt−dt =
2|X|/2

2d1+···+dt
.

Hence, even if one of the Xi’s is a little imbalanced, then the product is far from full-rank.

Lemma 13.3 shows that the size of Xi decreases slowly with i, and it is not hard to show

that |Xi| ≥
√
|X| for i ≤ t′

def
= log |X|

100
. We wish to show that the probability that none of

gi (for i ≤ t′) is k-unbalanced for k = |X|1/20 is very small (inverse polynomially small).

Since we have t = Θ(log n) such independent events, the probabilty that none of the gi’s are

k-unbalanced will be much smaller.

In the original setting of balanced partitions, these events are not exactly independent

but one can make the calculations work out (using basic properties of hypergeometric distri-

butions). But we’ll work with partitions obtained by assigning each variable independently

to Y or Z.

Let Ei be the event that gi is not k-unbalanced. Since the variables of the gi’s are

variable disjoint, and each variable is independently assigned to Y or Z, these events Ei’s
are independent. What is the probability that Ei holds? The event Ei is just the probability

that |Yi| ∈
[
|Xi|

2
− k, |Xi|

2
+ k
]
. Even the probability of |Yi| = |Xi|/2 is at most O(1/

√
Xi).

Hence,

Pr [Ei] ≤ 2k√
Xi

≤ O

(
2k

4
√
|X|

)
.

Since t = Θ(log n), and these are independent events,

Pr [E1 ∧ · · · ∧ Et′] ≤ |X|−ε log|X| for some ε > 0.

Now suppose we further condition this on the event that |Y | = |Z|, how different can the

above probability become?

Pr [E1 ∧ · · · ∧ Et′] ≥ Pr [E1 ∧ · · · ∧ Et′ | |Y | = |Z|] · Pr[|Y | = |Z|]

=⇒ Pr [E1 ∧ · · · ∧ Et′ | |Y | = |Z|] ≤ |X|−ε log |X| ·
√
|X|

and the
√
|X| is inconsequential when we have an inverse-quasipolynomial error probability.

122

Therefore,

Pr
X=Y tZ
|Y |=|Z|

[
Γ

[Raz]
Y,Z (g1 . . . gt) > 2(|X|/2)−|X|1/20

]
≤ |X|−ε log|X| .

Hence, if g1 . . . gt is a log-product multilinear polynomial, then with probability at least(
1− |X|−ε log |X|) we have that Γ

[Raz]
Y,Z (g1 . . . gt) ≤ 2(|X|/2)−|X|1/20

. Further, if f is computable by

a multilinear formula of size s then, by Lemma 13.3, f can be written as a sum of (s+1) log-

product multilinear polynomials. Hence, with probability at least
(
1− (s+ 1)|X|−ε log |X|)

we have that

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2(|X|/2)−|X|1/20

.

Hence, if (s+1) < |X|(ε/2) log |X|, then with high probability a random partition would ensure

Γ
[Raz]
Y,Z (f)� 2|X|/2. Let us record this as a lemma.

Lemma 13.14. Let f ∈ F[X] be computed by a multilinear formula of size s < |X|(ε/2) log |X|

for a small enough constant ε > 0. Then with probability at least (1 − |X|−(ε/2) log |X|) we

have

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2|X|/2 · 2−|X|1/20

for a random partition X = Y t Z with |Y | = |Z| = |X|/2.

13.3.2 Detn and Permn have large rank

The last step of the proof would be to find an explicit polynomial whose partial derivative

matrix under a random partition has large rank. As earlier, our candidate polynomial would

be Detn or Permn. Unfortunately, both these polynomials are over n2 variables and degree

n. It is not hard to verify that the rank of the partial derivative matrix of Detn or Permn

can never be greater than 22n. Hence directly using Lemma 13.14, we would have 2O(n)

competing with 2n
2/2−nO(1)

which is simply futile. A simple fix is to first randomly restrict

ourselves to fewer variables and then apply Lemma 13.14.

Let X̃ = {x11, . . . , xnn}, and let us assume n = 2m is even. We shall interpret all

other variables as “scalars” by making our field K = F ({xij : i 6= j}) instead. If we had a

multilinear formula of size s, over F, computing Detn then we also have a multilinear formula,

over K, of size at most s. We shall apply Lemma 13.15 for this circuit.

However, we show that for every balanced partition X̃ = Y t Z the partial derivative

matrix (over K) has full-rank. We will prove that the matrix has full-rank by showing that it

123

has full-rank even after a substitution of the variables {xij : i 6= j}. Consider the following

restriction:

f = Det



y1 1

1 z1

. . .

ym 1

1 zm


= (y1z1 − 1) . . . (ymzm − 1).

It is easy to check that Γ
[Raz]
Y,Z (f) = 2m.

Lemma 13.15. For every balanced partition X̃ = Y t Z with |Y | = |Z| = m = n/2, we

have Γ
[Raz]
Y,Z (σ(Detn)) = 2m.

Combining Lemma 13.15 with Lemma 13.14, we have the following theorem.

Theorem 13.16 ([Raz09]). Any multilinear formula computing Detn or Permn must be of

size nΩ(logn).

13.3.3 Constructing a full-rank polynomial

As alluded to earlier, if f is a random polynomial, then for any partition X = Y t Z with

|Y | = |Z| = |X|/2 we expect Γ
[Raz]
Y,Z (f) = 2|X|/2. Can we construct such a polynomial explic-

itly? This was first answered by Raz [Raz06], and the construction was later simplified by

Raz and Yehudayoff [RY08] and we shall describe the latter here.

Main idea: Suppose you know the partition as Y = {y1, . . . , yn} and Z = {z1, . . . , zn},
then building a polynomial such that MY,Z(f) is full-rank is easy — just take f = (y1z1 +

1) . . . (ynzn + 1) which makes MY,Z(f) the identity matrix. What we would like is to have

one such copy for every partition, and we would also like to build it in a way so that f can

be computed in VP.

The first attempt is to build the polynomial inductively for every partition into two equal

parts, but “remembering” partial partitions take too much memory (similar to the situation

we had in Theorem 3.10). Raz and Yehudayoff instead use a different construct that, rather

than being based on partitions, is instead based on Dyck-strings or well-matched parentheses.

124

The language Dyck(n) refers to strings of length 2n over symbols ‘(’ and ‘)’ that is well-

matched in the natural way. That is “()()” and “(())” belong to Dyck(2) but not “())(”.

Raz and Yehudayoff come up with a natural map to convert every such string to a full-rank

polynomial, and we shall just state this by example.

Ω(“(())”) = (x1x4 + 1) · (x2x3 + 1)

Ω(“()()”) = (x1x2 + 1) · (x3x4 + 1)

That is, if the opening bracket at position i is closed at position j, then there is a factor

(xixj + 1). Let us define the polynomial as follows:

f(x1, . . . , x2n) =
∑

s∈Dyck(n)

Ω(s)

Let us attempt to compute the polynomial using a small circuit in the following natural

inductive manner.

fi,j(x) =



(xixj + 1) if j = i+ 1

0 if j − i is even

(xixj + 1) · fi+1,j−1

+
j−1∑
r=i+1

fi,r · fr+1,j otherwise

However, f1,2n is not equal to the polynomial f as the term corresponding to “()()(). . . ()” has

coefficient 1 in f but is Cn, the (n − 1)-th Catalan number. Nevertheless, this inductively

defined polynomial f1,2n has most of the properties we need. Raz and Yehudayoff take a

slight variant of it by adding a few auxiliary variables {ωi,j,k, ωi,j} to build the following

polynomial over the field F({ωi,j,k, ωi,j : i, j, k ∈ [2n]}).

f̃i,j(x) =



(xixj + 1) if j = i+ 1

0 if j − i is even

(xixj + 1) · f̃i+1,j−1ωi,j

+
j−1∑
r=i+1

f̃i,r · f̃r+1,j · ωi,r,j otherwise

Lemma 13.17 ([RY08]). The polynomial f̃ = f̃1,2n has the property that for every X = Y tZ

125

with |Y | = |Z| = |X|/2 we have Γ
[Raz]
Y,Z (f̃) = 2|X|/2.

Proof. The proof shall be over induction on n. For the base case, statement is obviously

true for n = 1 as f̃ = (x1x2 + 1) in this case.

Suppose n > 1, and let X = Y t Z be any partition with |Y | = |Z| = |X|/2. Then,

either both x1 and x2n belong to the same side of the partition, or they belong to different

sides. Let us handle each case separately.

Case 1: x1 and x2n are in different parts.

Then, polynomial f̃ where we set ω1,i,2n = 0 for all i. Under this substitution, f̃ is

equal to (x1x2n + 1) · f̃2,2n−1. By induction, we know that f̃2,2n−1 is full-rank under

equal sized partition and hence so is (x1x2n + 1) · f̃2,2n−1. As setting variables to zero

can only reduce the rank, it follows that MY,Z(f̃) must be full-rank as well.

Case 2: x1 and x2n are in the same part.

Since |Y | = |Z| = |X|/2, there must be some intermediate point r such that the two

intervals [1, r] and [r + 1, 2n] are both split evenly by Y and Z. Using induction on

each of these smaller intervals again, we get that MY,Z(f̃) is full-rank again.

This is one of the very few polynomials that we are aware of that can be computed by

polynomial sized arithmetic circuits, but is not known to be computable by polynomial size

ABPs.

13.4 Stronger lower bounds for constant depth multi-

linear formulas

Looking back at Lemma 13.14, we see that whenever f(X) is computable by a size s multilin-

ear formula Γ
[Raz]
Y,Z (f) is exponentially smaller than 2|X|/2 with probability

(
1− s · |X|−ε log |X|).

Hence we had to settle for a nΩ(logn) lower bound not because of the rank deficit but rather

because of the bounds in the probability estimate. Unfortunately, this lower bound tech-

nique cannot yield a better lower bound for multilinear formulas as we have already seen (in

Subsection 13.3.3) that there are explicit examples of polynomials computable by poly-sized

multilinear circuits with Γ
[Raz]
Y,Z (f) = 2|X|/2 under every partition. However, the probability

126

bound can be improved in the case of constant depth multilinear circuits to give stronger

lower bounds.

Note that Lemma 13.14 was proved by considering multilinear log-products (Defini-

tion 13.2) as the building blocks. To show that a multilinear log product g1(X1) . . . g`(X`)

has small rank under a random partition, we argued that the probability that all the Xi’s

are partitioned in a roughly balanced fashion is quite small. This was essentially done by

thinking of this as ` = O(log n) close-to-independent events, each with probability 1/poly(n).

If ` was much larger than log n (with other parameters being roughly the same), it should

be intuitively natural to expect a much lower probability of all the Xi’s being partitioned in

a roughly balanced manner. This indeed is the case for constant depth multilinear circuits,

and we briefly sketch the key points where they differ from the earlier proof. The first is an

analogue of Definition 13.2 in this setting.

Definition 13.18. A multilinear polynomial f is said to be a multilinear t-product if f can

be written as f = g1 . . . gt with the following properties:

• The variable sets of the gi are mutually disjoint

• Each gi non-trivially depends on at least t variables

♦

Lemma 13.19. Let f be a multilinear polynomial of degree d over n variables that is com-

puted by a depth-∆ multilinear formula Φ of size s. Then, f can be written as a sum of at

most s multilinear t-products for t = (n/100)1/2∆, and a multilinear polynomial of degree at

most n/100.

Proof. If d < n/100, then the lemma is vacuously true. Since Φ is a formula of depth ∆ and

computes a polynomial of degree d > n/100, there must be at least one product gate v of

fan-in at least
(
n

100

)1/∆
= t2. Then similar to Lemma 13.3,

f = Φv · f ′ + Φv=0

As Φv is a product of t2 polynomials, by grouping the factors together we have that Φv · f ′

is a multilinear t-product. Further, Φv=0 is a multilinear polynomial that is computable by

a depth-∆ formula of smaller size and we can induct on Φv=0.

Lemma 13.20. Let f(X) be an n-variate polynomial computed by a depth-∆ multilinear

formula of size s. If X = Y t Z is a randomly chosen partition with |Y | = |Z| = n/2, then

127

with probability at least (1− s · exp(−nΩ(1/∆))) we have

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2n/2 · exp(−nΩ(1/∆)).

Sketch of Proof. By Lemma 13.19, we have that f can be written as g0 + g1 + · · · + gs

where deg(g0) ≤ n/100 and g1, . . . , gs are multilinear t-products. Note that since g0 is a

multilinear polynomial of degree at most (n/100), the number of monomials in g0 is at most(
n

n/100

)
≤ 2n/10. Hence, Γ

[Raz]
Y,Z (g0) ≤ 2n/10.

For the other gi’s, we can bound the probability that Γ
[Raz]
Y,Z (gi) is large in a very similar

fashion as in Lemma 13.14, as the probability that all the factors of gi are partitioned in a

balanced manner is the intersection of t independent events. By very similar estimates, this

probability can be bounded by (1/poly(n))t. Hence, with high probability

Γ
[Raz]
Y,Z (f) ≤ Γ

[Raz]
Y,Z (g0) + · · ·+ Γ

[Raz]
Y,Z (gs) ≤ (s+ 1) · 2n/2 · exp(−nΩ(1/∆)).

Combining Lemma 13.20 with Lemma 13.15, we have the following theorem of Raz and

Yehudayoff.

Theorem 13.21 ([RY09]). Any multilinear formula of depth ∆ computing Detn or Permn

must be of size exp(nΩ(1/∆)).

128

Chapter 14

Lower bounds for multi-k-ic models

Recall that a multilinear depth three circuit is a sum of multilinear terms that are polynomi-

als of the form T = `1 · · · `d where every variable x ∈ X is present in at most one `i. Kayal

and Saha [KS15c] study more general depth three circuits that are sums of terms where very

variable occurs in “few” linear factors.

Definition 14.1 (Multi-k-ic depth three circuits). A product of linear polynomials T =

`1 · · · `d is said to be a multi-k-ic term if every variable x ∈ X occurs in at most k of the

linear polynomials. A depth three circuit is said to be a multi-k-ic depth three circuit if it is

a sum of multi-k-ic terms. ♦

For example, the circuit computing (x1 + x2)(x2 + x3)(x1 + x3) + (x1 + x3)(x2 + 3x3)

multi-2-ic circuit.

Kayal and Saha [KS15c] studied the question of proving lower bound for such multi-k-

ic depth-three circuits for small k and they showed that the techniques of [Raz09] can be

generalized to give exponential lower bounds for multi-k-ic depth-three circuits for small k.

Theorem 14.2 ([KS15c]). There is an explicit n-variate polynomial f ∈ VNP such that any

multi-k-ic depth-three circuit computing it must have size 2Ω(n/2100k).

14.1 Revisiting the measure

In all the multilinear lower bounds we saw, the measure used was the rank of the partial

derivative matrix under a random partition. We shall use the same measure, but keeping in

mind that monomials could be non-multilinear. Once again, for a partition X = Y t Z, we

129

shall define the matrix MY,Z(f) to be the matrix whose rows are indexed by all (possibly

non-multilinear) monomials mi in the Y variables, and columns are indexed by all (possibly

non-multilinear) monomials mj in the Z variables with the entry being the coefficient of

mimj in f . We shall abuse notation and use Γ
[Raz]
Y,Z (f) to refer to the rank of MY,Z(f).

As in the earlier lower bounds, we shall take a random partition X = Y t Z and study

Γ
[Raz]
Y,Z (f) for a small multi-k-ic circuit.

Remark. We shall take a slight deviation from the way we chose partitions earlier. Here,

we shall take every variable x ∈ X and map it to Y or Z with equal probability. Thereby,

it is possible that |Y | is not exactly |X|/2 but it would nevertheless be close to it with high

probability. This modification gives us the useful feature that the random partition is made

of independent events. This would turn out to be useful in the following calculations. ♦

14.2 Proof of Theorem 14.2

The proof strategy will be the same as earlier. For a random polynomial with degree in every

variable bounded by k, we expect Γ
[Raz]
Y,Z (f) to be Ω(kmin(|Y |,|Z|)). We shall show that for a

multi-k-ic term T = `1 · · · `d, under a random partition X = Y t Z, the measure Γ[Raz](T)

will be far from kn/2 with high probability, if n = |X|.
The proof that we shall describe here is a simplification of the original proof of [KS15c].

This proof would be very similar to the proof of Lemma 13.12.

Lemma 14.3. Let X = Y t Z be a random partition. If T is a multi-k-ic term, then with

probability
(

1− exp(− |X|
26k+1)

)
that

Γ
[Raz]
Y,Z (f) ≤ (1 + k)min(|Y |,|Z|) · exp

(
− |Y |

23k+1

)
.

Let us quickly recall how the proof of Lemma 13.12 proceeded. We essentially showed

that for any linear polynomial involving “few” variables, with some non-trivial probability

the random partition would map all the variables to one side of the partition. Thus, if there

are many such linear polynomials, the is a large fraction of the linear polynomials that do

not contribute to Γ
[Raz]
Y,Z (T). If there are very few such “small” linear polynomials, then the

degree would have cannot be too large and we can use a trivial bound. The proof here shall

proceed in a very similar fashion.

Proof of Lemma 14.3. Let T = `1 · · · `d. We shall call a factor ` to be “large” if the number

130

of variables it depends on is at least 3k, and let TL be the product of all `i’s that are “large”,

and let TS be the product of the remaining `i’s.

Observation 13.9, generalized to this setting, gives that Γ
[Raz]
Y,Z (T) ≤ Γ

[Raz]
Y,Z (TL) ·Γ[Raz]

Y,Z (TS).

Thus, it suffices to bound each term separately. The easy case is, as one would expect,

handling TL. Suppose Y is the smaller of the sets Y and Z. Let us list down every variable

in Y that occurs in TL in order as y1, . . . , yrL (with repetition). Let rL = (1 − δ)|Y |k for

some 0 ≤ δ ≤ 1. A trivial bound for Γ
[Raz]
Y,Z (TL) is

Γ
[Raz]
Y,Z (TL) ≤ 2deg(TL) ≤ 2rL/3k ≤ 2(1−δ)|Y |/3. (14.4)

The trickier case is with TS but intuitively the setting is very similar to what we encountered

in the proof of Lemma 13.12. Since any factor ` of TS depends on at most 3k variables,

with probability at least
(

1
23k−1

)
, all the variables of ` would be on the same side of the

partition. Thus, on expectation, there would be at least
(

deg(TS)
23k−1

)
factors that would not

contribute to Γ
[Raz]
Y,Z (TS) at all. In Lemma 13.12, we could show that the number of such

factors is concentrated around the expectation since the linear polynomials were disjoint

and the events were independent. However, in this setting a variable can occur in multiple

factors. Nevertheless, one can still use the fact that every variable occurs in at most k factors

to establish a concentration very similar to Chernoff’s Bounds. The following beautiful

theorem of Gavinsky, Lovett, Saks and Srinivasan [GLSS12] is exactly what we need.

Theorem 14.5 ([GLSS12]). Let X1, . . . , Xn be independent random variables. Let E1, . . . , Er

be boolean random variables that are functions of {Xi} such that each Xi influences at most

k of the Ej’s. If Pr[Ei = 1] ≥ p, then for any ε > 0, we have

Pr [E1 + · · ·+ Er ≤ (p− ε)r] ≤ e−2ε2r/k.

Again, let us list down every variable in Y that occurs in TS in order as y1, . . . , yrS (listed

with repetition). Note that rS + rL ≤ |Y |k, and since rL = (1 − δ)k|Y |, we have that

rS ≤ δ|Y |. Let Ei be the indicator random variable that is 1 if all the variables of the factor

` that contains yi are mapped to the same side of the partition; we shall call such an instance

variable yi as ineffective. In other words, the set of ineffective instances yi (with Ei = 1) are

those that do not contribute to Γ
[Raz]
Y,Z (TS).

Since each ` depends on at most 3k variables, we have that Pr[Yi = 1] ≥ p = 1
23k−1 . Let

us set ε = p
2

and use the above theorem. Hence, the probability at least
(
1− exp(− rS

k26k)
)
,

there are at least
(
rS
23k

)
ineffective instances.

131

For every variable x ∈ Y , let dx be the number of occurrences of x that is not ineffective.

We know that
∑

x∈Y dx ≤ rS ·
(
1− 1

23k

)
. On the other hand,

∏
x∈Y (1+dx) is an upper-bound

on the number of non-zero rows of MY,Z(TS). Hence,

Γ
[Raz]
Y,Z (TS) ≤

∏
x∈Y

(1 + di) ≤
(∑

x∈Y (1 + dx)

|Y |

)|Y |

≤

(
|Y |+ rS

(
1− 1

23k

)
|Y |

)|Y |

≤
(

1 + δk

(
1− 1

23k

))|Y |
≤ (1 + δk)|Y | ·

(
1− 1

23k+1

)|Y |
≤ (1 + k)δ|Y | exp

(
− |Y |

23k+1

)
.

Combining this with (14.4), we get with probability at least
(

1− exp(− |X|
26k+1)

)
that

Γ
[Raz]
Y,Z (T) ≤ (1 + k)min(|Y |,|Z|) · exp

(
− |Y |

23k+1

)
.

Using an union bound over all multi-k-ic terms, we obtain the simple corollary.

Corollary 14.6. Let C = T1 + · · ·+ Ts be a multi-k-ic circuit over variables X. Then for a

random partition X = Y t Z, with probability at least
(

1− s · exp(− |X|
26k+1)

)
, we have

Γ
[Raz]
Y,Z (C) ≤ s · (1 + k)min(|Y |,|Z|) · exp

(
− |Y |

23k+1

)
.

In particular, if s < exp(|X|
26k+2), then this happens with probability at least 1/2.

All that is left to do is find an explicit f such that Γ
[Raz]
Y,Z (f) = (k + 1)min(|Y |,|Z|) with

high probability and we would have our lower bound. Here is one example that is a slight

generalization of the construction in Subsection 13.3.3 of Raz and Yehudayoff [RY08] that

is defined as follows. We shall again work over the field F({ωa,b,c, ωa,b : a, b, c ≤ 2n}).

132

f
(k)
i,j =



k∑
r=0

xrix
r
i+1 if j = i = 1

0 if j − i is even(
k∑
r=0

xrix
r
j

)
· f (k)

i+1,j−1 · ωi, j,

+
j−1∑
`=i+1

f
(k)
i,` · f

(k)
`+1,j · ωi,`,j otherwise.

The following lemma generalizes follows almost directly from Lemma 13.17.

Lemma 14.7. The polynomial f = f
(k)
1,2n defined above has the property that for every par-

tition X = {x1, . . . , x2n} = Y t Z, we have

Γ
[Raz]
Y,Z (f) = (k + 1)min(|Y |,|Z|).

Further, this polynomial can be computed by a linear sized arithmetic circuit and hence is in

VP.

Combining this with Corollary 14.6 directly gives the lower bound of Theorem 14.2 for a

polynomial in VP.

Remark 14.8. There has been a subsequent improvement by Kayal, Saha and Tavenas which

I hope to add to this chapter soon. ♦

133

Chapter 15

Separating multilinear ABPs and

formulas

So far we have seen that the partial derivative matrix can be used to exhibit a weakness for

multilinear formulas. Furthermore, this also yielded a separation between circuits and ABPs

as we also saw a construction of a full-rank polynomial by a linear sized multilinear circuit.

A natural question now is where do multilinear ABPs sit? We do know that multilinear

ABPs are sandwiched between multilinear formulas and multilinear circuits and hence at

least one of the two containments has to be strict.

Definition 15.1 (Multilinear ABPs). An algebraic branching program is said to be multi-

linear if every path from s to t has variable-disjoint edge weights. ♦

Dvir, Malod, Perifel and Yehudayoff [DMPY12] proved that multilinear formulas are

strictly contained in multilinear ABPs. Formally, they prove the following result.

Theorem 15.2 ([DMPY12]). For every m ∈ N, there is an explicit polynomial Fn on

n = poly(m) variables x = {x1, . . . , xn} such that

• F is computable by a multilinear algebraic branching program of size O(n2),

• any multilinear formula computing F requires size nΩ(logn).

It is worth noting that one can not get an asymptotically better separation than this,

as any poly(n) sized multilinear circuit can be converted into a multilinear formula of size

nO(logn). Therefore, among other things this result tells us that a better reduction from

circuits to formulas is not possible at least in the multilinear regime.

134

Proof idea

The outline of the proof follows that of Raz’s proof [Raz09] of a quasipolynomial lower

bound for the full-rank-polynomial against multilinear formulas that we saw in Chapter 13.

That is it used the log-product decomposition for multilinear formulas, and showed that the

decomposition is “rank deficient” under a uniformly random equipartition of the variable

set, with high probability.

At this point, a possible line of argument is to use Raz’s full-rank-polynomial and show

that it is computable by multilinear ABPs. However, it is not known that this polynomial

is computable by a small multilinear ABP. The idea of Dvir et al. is to construct a different

polynomial that is full-rank for a certain subset of restricted partitions, and choose this subset

of partitions carefully so that the polynomial is computable by ABPs. This carefully chosen

set of partitions is referred to as arc partitions in the proof. The name becomes fairly clear

from the process of “sampling” an arc partition that is used to describe the distribution.

The harder part is to show that Raz’s lower bound proof continues to hold even for just

these restricted partitions. That is, we now need to show that the log-product decomposition

is rank deficient under a random arc partition with high probability. This proves to be quite

tricky and a large chunk of the proof is just that, as we will soon sketch in the rest of this

chapter.

15.1 Arc partitions

As mentioned above, the full-rank-polynomial as used in [Raz09] need not be computable

by multilinear ABPs. We will therefore have to work with a polynomial that has full rank

under a smaller set of partitions. We will call these partitions as arc partitions, which will

be characterised by the support of the distribution D of the random process given below.

The random process will first pick n/2 pairs from x and then “bicolour” each pair with

y and z uniformly at random, to obtain an equipartition. Imagine the indices of x from

{0, . . . , n− 1} arranged in order on an n-cycle, in a clockwise manner. The following example

of such a partition from this distribution should help understand the formal sampling process.

135

The random process begins with the singleton set of pairs P1 = {{0, 1}}. The process

then picks one pair of unpicked elements in each iteration, till there are no more elements to

pick. Throughout the process of picking these n/2 pairs, it maintains the invariant that all

the pairs picked till some iteration t, together cover exactly a contiguous arc of length 2t on

the cycle. Let the set of pairs picked ater iteration t be Pt, and let the corresponding arc be

[Lt, Rt], with Rt − Lt ≡ 2t(modn). Under the given restrictions there are three choices for

the next arc to be picked, and the process picks one of these uniformly at random. That is:

Pt+1 =


Pt ∪ {{Lt − 2, Lt − 1}} w.p. 1

3

Pt ∪ {{Lt − 1, Rt + 1}} w.p. 1
3

Pt ∪ {{Rt + 1, Rt + 2}} w.p. 1
3

Here the additions and subtractions on the indices are modulo n. Let the final set of n/2

pairs be P = Pn
2
. The process now goes over all pairs inside P and colours one variable by

y and other by z, uniformly at random to obtain the equipartition.

For ease of notation, we will say that both the set of n/2 pairs P and the actual partition

π(P) = y t z are generated using D. That is, we will use both π(P) ∼ D and P ∼ D. As

we mentioned earlier, the set of arc partitions is exactly the support of this distribution D.

Similarly, an arc-full-rank polynomial will be a polynomial f for which My,z(f) has rank

2n/2 for every arc partition y, z.

The task is now in two parts. The first is to show that we can find a multilinear ABP that

computes an arc-full-rank polynomial f . Then, we have to show that any small multilinear

formula is rank-deficient under a random arc-partition.

136

15.2 Upper bound with ABPs

We want the hard polynomial to have full rank with respect to every arc partition, so let us

see how we can come up with a full rank polynomial for a fixed partition y t z. Say y =

{y1, . . . , ym} and z = {z1, . . . , zm}. We know that the polynomial P (y, z) = Πi∈[m](yi + zi)

has full rank with respect to the given partition.

Now we want to extend this idea to having full rank over any arc partition. One way to

do this is to add a few (at most polynomially many) extra variables w so that for any arc

partition π there will be an assignment φ to w that will ensure that Fn(φ(w), π(x)) looks

like P (y, z). We are going to do just that and additionally ensure that Fn is still computable

by a small multilinear ABP.

Recall that for sampling of pairs from D we maintained the invariant that the pairs in Pt

cover a contiguous arc [Lt, Rt] of length exactly 2t on the n-cycle. This gives us that for any

t, after t steps the number of distinct Pts possible, is at most n. Moreover for the (t + 1)th

sampling step it is enough just to know Lt and Rt. This helps us construct the following

ABP of width ≤ n and n/2 layers, that we describe by describing the underlying graph.

Let the nodes in each layer t be labelled as v
(t)
1 , · · · , v(t)

n . The node v
(t)
i would correspond

to the fact that the current arc is [i, i + 2t] mod n. We now describe the edges of the ABP.

There would be three edges out of v
(t)
i and they are as follows:

v
(t)
i

v
(t+1)
i−2

(xi−2 + xi−1) · w1,i,t

v
(t+1)
i−1

(xi−1 + xi+2t+1) · w2,i,t

v
(t+1)
i

(xi+2t+1 + xi+2t+2) · w3,i,t

The ABP therefore has O(n2) vertices and since there are three edges out of each vertex,

there are O(n2) edges. The polynomial computed by the ABP, Fn, would be our hard

polynomial. From the construction, the following lemma is easy to verify and is left as an

easy exercise.

Exercise 15.1 Show that the polynomial Fn constructed above is full-rank with respect

to every arc-partition.

137

15.2.1 Lower bound against formulas

As seen earlier in Chapter 13, we will prove the lower bound by proving that the probability of

a log-product term having rank that is nδ close to full is inverse quasipolynomially small (for

some small enough δ > 0). The difference here is the distribution is over the arc-partitions

and not the uniform distribution.

Suppose |X| = n. As in the previous settings, we have a partition X = X1 t · · · t Xt

from our log-product decomposition with k = Θ(log n) and |Xi| ≥ |X|7/8 for all i. We’ll refer

to each Xi as a bucket. If we pick an arc-partition at random, we would like to estimate

the probability that none of the Xi’s are nδ unbalanced. We would like to show that this is

inverse quasi-polynomially small.

Arc partitions are chosen by first choosing a pairing P and then bi-colouring each pair

p ∈ P . Firstly, note that if Xi picks up only “whole pairs” from the set of pairs P , then

no matter how we bi-colour each pair we would have Xi being completely balanced. It is

therefore sensible to look at buckets that pick up exactly one element from a lot of pairs.

Vi(P) = {p ∈ P : |p ∩Xi| = 1}

G(P) =
{
i ∈ [t] : |Vi(P)| ≥ n1/1000

}
The set G(P) refers to the “good buckets” that cut many pairs; the colours of these end-

points are completely independent. Therefore, at the very least, for each i ∈ G(P), we can

hope to say that the probability that Xi is not nδ-unbalanced is small (inverse polynomial).

Lemma 15.3. Let P be a partition of X into pairs and let G(P) be as defined above. Then,

for any i ∈ G(P),

Pr[Xi is nδ-balanced] ≤ O

(
2nδ

n1/2000

)
where the probability is over a random bi-colouring of the pairs in P .

This lemma is easy to prove. If the set G(P) is large, we can then hope to say that

we have a good number of independent events and hope for an inverse quasi-polynomial

probability.

138

Arranging for many independent events

The following lemma states that for most pairings P ∼ D we must have many buckets in

G(P). This is the most technical part of the paper and we’ll see a very rough sketch in the

next section.

Lemma 15.4. Given a partition X = X1 t · · · tXt with t = Θ(log n) and |Xi| ≥ n7/8 for

all i ∈ [t]. Then,

Pr
P∈D

[
|G(P)| ≤ t

1000

]
≤ n−Ω(t)

where D is the distribution for arc partitions.

Hence, with high probability we have |G(P)| ≥ t/1000 = Θ(log n). Now we would like

to say that there are many (almost) independent events among these good buckets.

Assume the good buckets are X1, . . . , Xr without loss of generality. From Lemma 15.3,

we know that the probability that X1 is too balanced is small. However we now want to

argue the same for X2, even after we condition on X1 being too balanced. This need not

always be true. Consider the setting that both X1 ∪X2 is a just a union of pairs, but each

pair has one end-point in X1 and the other in X2. Now if X1 is very balanced, then X2

would also be very balanced.

Thus, in order to say X2 would likely be unbalanced even after conditioning on X1 being

balanced, we need to say that X2 has many other pairs that are cut (that is, these aren’t

accounted for in X1). More generally, want to ensure that for each i ∈ [r], the bucket Xi

cuts many pairs p ∈ P whose other end-point is not in X1 t · · · tXi−1.

Let us consider a graph H(P) with the buckets [t] as vertices and let us mark the good

buckets [r] as red. Add an edge (i, j) if |Vi(P) ∩ Vj(P)| ≥ n1/1500; that is there are many

pairs with one end-point in i and one in j. Note that each good bucket i has degree at least

1 in H(P) as each good bucket cuts n1/1000 pairs and we only have O(log n) buckets.

Lemma 15.5. There exists a sequence B = (b1, . . . , b`) of good buckets from H(P) with

` ≥ r
2

such that for all i ∈ [`], the vertex bi in the graph H(P)\{b1, . . . , bi−1} has degree ≥ 1.

Proof. Consider a spanning forest of H(P). Since every good bucket has degree at least

1, the spanning forest has at least r/2 edges emanating from good buckets. The required

sequence of vertices can be obtained by repeatedly removing leaves of this forest.

139

Let (b1, . . . , b`) be such a sequence for H(P), with ` ≥ r/2 = Ω(t). For brevity, let

pairs that are not cut by any of the bis be P̃ . For every i ∈ [r], define by Pi the pairs from

(P \ (P1 ∪ · · · ∪ Pi−1)) that are cut by bi. Now view the random colouring π(P) of pairs from

P to be happening in the order P1, . . . , Pr, P̃ . From Lemma 15.5 we have that |Pi| ≥ n1/1500

for all i ∈ [r]. As mentioned above, this will help us yield an inverse polynomial factor for

each of the r buckets, even after conditioning on previous colourings. Also let ni = |bi| and

for π(P) = y, z ∼ D, let yi = |bi ∩ y|. Let δ > 0 be a suitably small constant. For i ∈ [r],

let the Ei refer to the event that |yi − ni/2| ≤ nδ. In the case when |G(P)| ≥ K/1000, we

get that

Pr
π(P)=y,z∼D

[
rank (MY,Z(g)) ≥ 2n/2−n

δ
]
≤ Pr

π(P)=y,z∼D

∧
i∈[r]

Ei


=
∏
i∈[r]

Pr
π(P)=y,z∼D

[
Ei

∣∣∣∧
j<i

Ej

]

≤
∏
i∈[r]

O

(
2nδ√
|Pi|

)
≤
∏
i∈[r]

n−Ω(1) = n−Ω(K).

Combining this with the fact that G(P) must be large with high probability (Lemma 15.4),

we get

Pr
π(P)=y,z∼D

[
rank (MY,Z(g)) ≥ 2n/2−n

δ
]

≤ Pr
π(P)=y,z∼D

[
rank (MY,Z(g)) ≥ 2n/2−n

δ
∣∣∣ |G(P)| ≥ K/1000

]
Pr
P∼D

[|G(P)| ≥ K/1000]

+ Pr
P∼D

[|G(P)| ≤ K/1000]

≤ n−Ω(K) + n−Ω(K) = n−Ω(logn).

This would finally complete the proof of Theorem 15.2.

15.3 Proof sketch for Lemma 15.4

We will a brief sketch of the proof of Lemma 15.4. The full proof is quite invovled and a full

description can of course be found in their paper [DMPY12]. We will try to give a rough

140

sketch of the main ideas in the proof.

We will call an index j a jump with respect to the bucket Xk, if xj ∈ Xk and xj+1 /∈ Xk.

The following observation is easy to see.

Observation 15.6. For any j 6= 0, 1, the probability that (j, j+ 1) is chosen as a pair by an

arc partition is at least 1/9.

Therefore, if we have many buckets with lots of jumps, then a lot of them would contribute

pairs that are cut. More formally, suppose we have more then K/2 buckets with at least

N = n1/100 jumps. We then collect at most N jumps from each bucket to get a total of

≥ KN/2 distinct indices. Observation 15.6 says the probability that a particular jump

results in a pair that is cut bounded below by some constant. We therefore conclude that

≥ KN/100 of the total jumps get converted into cuts with high probability. Since we chose

at most N jumps from each bucket, this means that at least K/1000 buckets contribute at

least N1/10 = n1/1000 cuts, which proves Lemma 15.4 for this case.

The trickier case is when there aren’t many buckets with a lot of jumps. Let us consider

an extreme case to understand this better — buckets form large contiguous segments of the

circle.

Suppose we have a partial arc [Lt, Rt], and suppose we have two different buckets Xi and

Xj on the two ends that are to be processed. If these segments are sufficiently large, then

a constant fraction of these would be matched between Xi and Xj (via the (Lt − 1, Rt + 1)

sort of pairs) with high probability, making both i and j good buckets.

The other case could be that the two segments at the ends of Lt and Rt belong to the

same bucket say Xi. Let us call these segments AL and AR and let their lengths be aL and

aR. The next few pairs would not yield any cuts as they will below to the same bucket. But

the key insight is this — consider the arc partition when one of the two sides is completely

processed (that is, AL or AR is completely contained in [Lt′ , Rt′] at that time). When this

happens, the probability that there are very few elements left in the other part is inverse

polynomially small. This is once again very similar to the fact that a random partition

would not cut a set in too balanced a fashion. In similar spirit, the probability that there

are too few elements in AL left after AR has been completely processed (or vice-versa) is

inverse polynomially small. Hence, we would essentially reduce to the previous case when

we have two sufficiently large segments from different buckets on the ends of Lt and Rt.

Therefore, the probability that i fails to be a part of G(P) is inverse polynomially small,

141

and these events are almost independent for various i’s. Therefore, the probability that

G(P) < t/1000 is at most n−Ω(t) as claimed by Lemma 15.4.

The formal proof requires some careful analysis and Dvir et al. [DMPY12] do this by

considering the process as a “random walk on a distorted chess board”.

15.4 What about IMM?

The result of Dvir, Malod, Perifel and Yehudayoff [DMPY12] that we dicussed separate

the classes of syntactic multilinear ABPs and multilinear formulas. A natural question is

whether this also works for the iterated matrix multiplication polynomial (IMM). Note that

the polynomial used for this lower bound was a syntactic multilinear ABP but is not a

multilinear projection of IMM! The same variable may occur in many edges even though

each path may use each variable at most once. Therefore, such a reduction does not follow

from this proof. In fact, this is an important open problem.

Open Problem 15.1 [Multilinear formula lower bounds for IMM]

Show that IMMn,d requires multilinear formulas of (nd)Ω(lognd) to compute it.

142

Chapter 16

Tensor rank and formula lower bounds

In this chapter, we will establish an apriori surprising connection between lower bounds for

homogeneous arithmetic formula and constructing explicit tensors of full rank. The chapter

is based on a result of Raz [Raz10c].

16.1 Tensors

Tensors are natural higher dimensional analogues of matrices. A matrices is nothing but a

two dimensional array filled in with numbers from some underlying field. A tensor is a higher

dimensional version of this, where we have an d-dimensional cuboid filled with numbers. A

tensor T is a map of the form

T : [m1]× · · · × [md] −→ F

the same way an m × n matrix a map from [m] × [n] → F. However, if one wants to

understand a tensor more functionally (similarly to how it is useful to think of matrices as

linear transformations on vector spaces), it is more natural to extend this definition linearly

as follows.

Definition 16.1 (Tensor). A tensor T is a map of the form

T : V1 × · · · × Vd −→ F

where each Vi is a vector space over F, of say dimension mi, which is linear in every coor-

143

dinate i.e.

T (v1, . . . , αvi + βv′i, . . . ,vd) = αT (v1, . . . ,vi, . . . ,vd) + βT (v1, . . . ,v
′
i, . . . ,vd).

The parameter d is called the order of the tensor, and we say that the shape of T is m1 ×
· · · ×md. ♦

Since a tensor is linear in every coordinate, it suffices to specify the image of T at the

basis of V1 × · · · × Vd and extend it linearly. So a tensor can indeed be thought of as filling

up a d-dimensional array of shape [m1] × · · · × [md] by field elements, the same way an

m× n matrix is specified by an m× n array filled up with field elements. Indeed, a matrix

is nothing but an order-2 tensor.

It would sometimes be useful to switch between the two notions of thinking of a tensor

as a multilinear map from V1 × · · · × Vd to F and thinking a tensor as just a map from

[m1]× · · · × [md]. So throughout this chapter, we shall fix a basis {ei1, . . . , eimi} for Vi and

when we shall use T [j1, . . . , jd] to really denote T (e1j1 , . . . , edjd).

16.1.1 Tensors as polynomials

In our setting, it would be useful to think of tensors as a restricted form of multilinear

polynomials that are called set-multilinear polynomials.

Definition 16.2 (Set-multilinear polynomials). Let x = x1 t · · · t xd be a partition of

variables and let |xi| = mi. A polynomial f(x) is said to be set-multilinear with respect to

the above partition if every monomial m in f satisfies |m ∩Xi| = 1 for all i ∈ [d]. ♦

In other words, each monomial in f picks up at most one variable from each part in the

partition. It is easy to see that many natural polynomials such as Det or Perm or NW are

all set-multilinear for an appropriate partition of variables.

Observation 16.3. For any tensor T of shape [m1] × · · · × [md], we can associate a set-

multilinear polynomial f(x) with x = x1 t · · · t xd and xi = {xi1, . . . , ximi} as

f(x) =
∑

1≤ij≤mj
∀j∈[d]

T (i1, . . . , id) · x1i1 · · · xdid . (16.4)

Another representation is to just use a single variable xj for a part xj and use higher

144

powers. That way, we can associate the following polynomial with a tensor T :

f(x1, . . . , xd) =
∑

1≤ij≤mj
∀j∈[d]

T (i1, . . . , id) · xi11 · · ·x
id
d . (16.5)

The same also holds in the other direction where we can interpret any set-multilinear poly-

nomial as an appropriate tensor.

16.1.2 Rank of a tensor

Just like any matrix has a natural definition of rank, there is an analogue for tensors as well.

The rank of a matrix M can be defined as the smallest r for which M can be written as a

sum of r matrices of rank 1. A rank-1 matrix is just a matrix of the form uvT where the

(i, j)-th entry is uivj. We shall abuse1 notation and use u⊗ v to denote the order-2 tensor

T where T [i, j] = uivj. This naturally generalizes to higher order as well.

Definition 16.6 (Elementary tensors, and tensor rank). For v1 ∈ V1, . . . ,vd ∈ Vd, define

the tensor v1 ⊗ · · · ⊗ vd to be the tensor E given by

E[j1, . . . , jd] = (v1)j1 · · · (vd)jd .

We shall call such tensors as elementary tensors or rank-1 tensors.

For an arbitrary tensor T , the tensor rank of T , denoted by rank(T), is the smallest r

such that T can be expressed as a sum of r elementary tensors. ♦

What do elementary tensors look like as polynomials? Let us consider the set-multilinear

polynomial setting as in (16.4). It is easy to see that a rank-1 tensor is precisely a set-

multilinear product of linear forms such as

f(x) = `1(x1) · · · `d(xd)

where each `i(xi) is a linear form in the variables in xi.

In the setting of (16.5), it is easy to see that a rank-1 tensor is precisely a product of

1it is abuse because it is really a tensor product of u and vT .

145

univariates such as

f(x) = f1(x1) · · · fd(xd).

Hence the following three questions are equivalent:

• Given a tensor T , find its rank.

• Given a set-multilinear polynomial f , find the smallest set-multilinear ΣΠΣ circuit

computing it.

• Given a polynomial f , find the smallest expression as a sum of product of univariates.

However, unlike matrices, computing the rank of even an order-3 tensor is NP-hard

[H̊as90]. But one could still ask if we can prove good upper or lower bounds for some specific

tensors, or try to find a tensor with large rank. But before that, let us look at some basic

properties that tensor rank satisfies.

Properties of tensor rank

The following are a couple of basic properties that follows almost immediately from the

definitions.

Lemma 16.7 (Sub-additivity of tensor rank). Let T1 and T2 be two tensors of the same

shape and order. Then, if T = T1 + T2, then rank(T) ≤ rank(T1) + rank(T2).

Lemma 16.8 (Sub-multiplicativity of tensor rank). Let T1 : V1 × · · · × Vd1 → F and T2 :

W1 × · · · ×Wd2 → F be two tensors. Then if T = T1 ⊗ T2 given by

T [i1, . . . , id1 , j1, . . . , jd2] = T1[i1, . . . , id1] · T2[j1, . . . , jd2],

then rank(T) ≤ rank(T1) · rank(T2).

16.1.3 Upper bounds on tensor rank

Let us consider an order-d tensor T of shape n × · · · × n. How large can rank(T) be? One

possible upper bound we could say is nd. Surely, the tensor is an d-dimensional array with

just nd entries. We can certainly write it as a sum of nd elementary tensors of the form

ej1 ⊗ · · · ⊗ ejd . So clearly rank(T) ≤ nd. But we can do a little better. Consider the case

146

when d = 2, and we have an n × n matrix. The bound on the rank is not n2 but rather

n. This indicates that one should be able to do a bit better than nd for the general case.

Indeed we can.

Lemma 16.9. Let T be an order-d tensor of shape n× · · · × n. Then, rank(T) ≤ nd−1.

Proof. Let us revisit the case when d = 2, where we know an n×n matrix has rank at most

n. Interpreting this statement via (16.5), this implies that of q(x1, x2) is a bi-variate with

degree in each variable bounded by n, then q can be written as

q(x1, x2) =
n∑
i=1

gi(x1)hi(x2).

Therefore, if f(x1, . . . , xd) is a polynomial with degree in each variable bounded by n, then

we can write f as

f(x1, . . . , xd) =
∑

m∈Mon{x3,...,xd}

m · qm(x1, x2)

=
∑

m∈Mon{x3,...,xd}

m ·

(
n∑
i=1

gm,i(x1) · hm,i(x2)

)

which is a sum of product of univariates of top fan-in n · nd−2 = nd−1.

A counting argument would say that there do exist tensors of rank at least nd−1/d as

each elementary tensor has nd degrees of freedom and an arbitrary tensor has nd degrees of

freedom. One might think that the above upper bound of nd−1 should be tight. Bizarrely,

it is not! For example (cf. [Pam85]), the maximum rank of any tensor of shape 2 × 2 × 2

is 3 and not 4 as one might expect! Tensor rank also behaves in some strange ways under

limits unlike the usual matrix rank. But a big open question is to find explicit tensors of

such large rank.

Open Problem 16.1

Can we find an explicit tensor T : [n]d → F of rank nd(1−o(1))?

Raz’s [Raz10c] showed that in certain regimes, an answer to the above question would

yield arithmetic formula lower bounds.

147

16.2 Tensor rank of small formulas

From this section onwards, we shall assume the set-multilinear polynomial interpretation

of a tensor T : [n]d → F as described in (16.4). Hence our variables x is partitioned as

x = x1 t · · · t xd with |xi| = n for all i ∈ [d]. The main motivating question would be the

following:

If f is a set-multilinear polynomial that is computed by a small formula, what

can one say about its tensor rank?

To begin with, let us restrict ourselves to certain structured formulas that in a sense

respects the partition defined.

Definition 16.10 (Set-multilinear formulas). A formula Φ is said to be a set-multilinear

formula if for every gate in the formula computes a set-multilinear polynomial. ♦

From the above definition, note that the set-multilinear formulas are a subclass of homo-

geneous formulas. As in the multilinear setting, it is easy to see that set-multilinearity for

formulas can be made a syntactic restriction where each gate computes a tensor, with addi-

tion gates only adding “alike” tensors and multiplication gates multiplying disjoint tensors.

Exercise 16.1 Show that set-multilinear formulas can, without loss of generality, be

assumed to be syntactically set-multilinear formulas.

An easier question to the one above would be the following:

If f is a set-multilinear polynomial that is computed by a small set-multilinear

formula, what can one say about its tensor rank?

In the rest of this chapter, we shall prove the following result of Raz [Raz10c].

Theorem 16.11 ([Raz10c]). Let Φ be a set-multilinear formula of size s ≤ nc computing a

polynomial f(x1, . . . ,xd). Then,

rank(f) ≤ nd

nd/ exp(c)
.

In the setting when d is small, Raz [Raz10c] also showed that formulas can be converted

to set-multilinear formulas with a modest cost.

148

Theorem 16.12 ([Raz10c]). Suppose d = O
(

logn
log logn

)
. If Φ is a formula of size s = poly(n)

that computes a set-multilinear polynomial f(x1, . . . ,xd), then there is a set-multilinear for-

mula of poly(s) size that computes f as well.

As a corollary, finding explicit tensors of almost full rank would imply super-polynomial

formula lower bounds in the low-degree regime.

Corollary 16.13 ([Raz10c]). If f(x1, . . . ,xd) is an explicit tensor of rank nd(1−o(1)) with

ω(1) = d = O
(

logn
log logn

)
, then any formula computing f must be of super-polynomial size.

The above two theorems are of very different flavours and should really be thought of

as two independent surprising results. Theorem 16.11 is a tensor-rank upper bound and

Theorem 16.12 is a structural result. We shall first address Theorem 16.11 in the next

section and address Theorem 16.12 after that.

16.2.1 The tensor-rank upper-bound

We shall now prove Theorem 16.11. The proof described here is not the original proof in

[Raz10c] but is an alternate proof by Suryajith Chillara, Mrinal Kumar and Ramprasad

Saptharishi.

Proof of Theorem 16.11. For this we would need the slightly better depth reduction for ho-

mogeneous formulas (Theorem 5.23) of Saptharishi and Vinay [SV14]. We recall the state-

ment here.

Theorem (Theorem 5.23). Let f be a homogeneous n-variate degree d polynomial computed

by a size s homogeneous formula. Then for any 0 < t ≤ d, f can be equivalently computed

by a homogeneous ΣΠ[a]ΣΠ[t] formula of top fan-in s10(d/t) where

a ≥ 1

10

(
d

t

)
log t.

It is a fairly straightforward observation to see that the above theorem preserves multilin-

earity and set-multilinearity as well. We shall start with the set-multilinear formula Φ of size

s = nc that computes the polynomial f(x1, . . . ,xd) and apply Theorem 5.23 for a suitable

choice of t (that shall be set shortly). Therefore we now have a set-multilinear expression of

the form

f = T1 + · · ·+ Ts′

149

where s′ ≤ s10(d/t) = n10c(d/t) and each Ti = Qi1 · · ·Qiai is a set-multilinear product. Let us

fix one such term T = Q1 · · ·Qa and we know that this is a set-multilinear product with

a ≥
(
d log t

10t

)
. Let di = deg(Qi). By the sub-multiplicativity of tensor rank (Lemma 16.8) and

the trivial upper bound (Lemma 16.9) we have

rank(T) ≤ nd1−1 · · ·nda−1

= nd−a

=⇒ rank(f) ≤ s′ · nd−a (Lemma 16.7)

=

(
nd

na−10c(d/t)

)
Let us focus on the exponent of n in the denominator. Using the lower bound on a from

Theorem 5.23, we get

a− 10c(d/t) ≥ d log t

10t
− 10c

(
d

t

)
=

(
d

t

)(
log t

10
− 10c

)
=

(
d

2O(c)

)
if we set

log t

10
= 11c

=⇒ rank(f) ≤ nd

nd/ exp(c)

which is what we set out to prove.

16.2.2 Making formulas set-multilinear

In this section we shall prove Theorem 16.12. The proof would proceed in two steps, both

of which are quite interested in their own right.

• Homogenization : In the first step, we shall convert a formula that compute a homo-

geneous polynomial of degree d in n variables to a n homogeneous formula computing

the same polynomial. It would turn out that if d = O(log n), then this transformation

only incurs a poly(n) blow-up in the size.

• Set multilinearization : In the second step, we show that for any homogeneous

arithmetic formula that computes a set multilinear polynomial of degree d in n variables

can be converted to a set-multilinear formula computing the same polynomial. In this

150

setting, if d ≤ O(log n/ log log n), the blow-up in the size of the formula will only be

poly(n).

Homogenization of low-degree formulas

Lemma 16.14 ([Raz10c]). Let Φ be a formula of size s computing an n-variate homogeneous

polynomial f of degree d. Then, there is a homogeneous formula Φ′ computing f of size at

most poly
(
s,
(
d+log s

d

))
.

In particular, if d = O(log n) and n = poly(n) then we have size(Φ′) = poly(n) as well.

Proof. Recall that due to the depth reduction result of Brent and Spira (Lemma 5.5), we can

assume without loss of generality that the fan-in of every gate in Φ at most 2 and the depth of

Φ is O(log s). The construction of the new formula Φ′ would have no surprises – homogenize

the formula Φ to obtain a circuit C using the standard homogenization (Lemma 5.2), and

unravel the circuit to make it a formula in the most natural way. It is the analysis of the

size that would give the lemma.

For every gate v in Φ, we have d+ 1 gates (v, 0), (v, 2), . . . , (v, d) in C. Semantically, the

polynomial computed at such a gate (v, i) is the degree-i homogeneous component of the

polynomial computed at v in Φ. As in Lemma 5.2, we shall connect these edges as follows:

v = u+ w =⇒ (v, i) = (u, i) + (w, i) for all i

v = u× w =⇒ (v, i) =
i∑

j=0

(u, j) · (w, i− j) for all i

Hence, we now have a homogeneous circuit C that computes f and has size at most s′ =

O(sd2). Furthermore, the depth of this circuit is at most twice the depth of the formula Φ

which was O(log s). Hence C is a homogeneous circuit of depth O(log s) and size O(sd2)

computing f .

To convert C into a formula, we will do the natural operation of recomputing a node

whenever we need to reuse the computation. This is equivalent to duplicating every gate

(v, i) of C as many times are there are paths from this gate to the root fo C. Thus, in order

to upper bound the size of the resulting formula, we will require an upper bound on the

number of distinct paths from every gate (v, i) of C to its root.

Currently, C is a circuit because if v is a product gate of Φ with children u and w, then

the out degree of (u, j) and (w, j) in C could be more than 1 as it contributes to (v, j′) for all

151

j ≤ j′ ≤ d. Hence, the resulting structure is a circuit and not a formula. However, at sum

gates, the out degree of the children continue to be 1. But this gives us a good understanding

of the many paths from (v, i) to the root in C. Let v → v1 → · · · → vr be the path from v

to the root (= vr) in Φ. Then, the paths from (v, i) to (vr, d) will be of the form

(v, i)→ (v1, i1)→ · · · → (vr, ir)

where i ≤ i1 ≤ · · · ≤ ir = d. But the number of such choices for (i1, . . . , ir) the same as the

number of non-negative integer solutions to b1 + · · ·+ br = d− i which is at most
(
r+d
d

)
. We

know that the circuit has depth at most O(log s) and hence r ≤ O(log s). Therefore, the

number of paths from any (v, i) to the root is at most
(
d+O(log s)

d

)
. Hence, if Φ′ is the formula

obtained by unravelling C, we have

size(Φ′) = poly

(
s,

(
d+ log s

d

))
.

Set-multilinearization of low-degree formulas

We shall now show that a homogeneous formula can be converted to a set-multilinear formula

with a cost that is affordable if d is small.

Lemma 16.15 (Formula Set-multilinearization). Let f(x) be an n-variate degree set-multilinear

polynomial with respect to the partition x = x1 t · · · txd that is computed by a homogeneous

formula Φ of size s. Then, there exists a set-multilinear formula Φ′ of size at most 2O(d log log s)

which computes f .

In particular, if d = O
(

logn
log logn

)
and s = poly(n) then the size(Φ′) = poly(n).

Proof. To start with, without loss of generality, let us assume that the formula Φ is fan-

in 2, homogeneous and has depth O(log s). In the first step, we set multilinearize Φ in

the obvious way to obtain a circuit C. To this end, for every gate v in Φ, and vector

a = (a1, . . . , ad) ∈ {0, 1}d, there is a gate (v, a) in C. Semantically, the the polynomial

at (v, a) consists of the monomials in the polynomial computed at v (in Φ) which contain

exactly one variable from the set xi for every i such that ai = 1. The edges in C are connected

in a natural way, namely for a gate v with children u and w, we have the following edges:

v = u+ w =⇒ (v, a) = (u, a) + (w, a) for all a

152

v = u× w =⇒ (v, a) =
∑

b+c=a

(u,b) · (w, c) for all a.

Clearly, the size of C is at most 2d · s. Moreover, the gates in C which have out degree

more than one are of the form (u, a) where u is a child of some multiplication gates at Φ.

The root of C would now be (root,1).

Like in the proof of Lemma 16.14, we now convert the circuit C to a formula by replicating

nodes whenever we need to reuse computations. Hence, we would require as many copies

of a gate (v, a) as there are paths from (v, a) to the root of C. In order to bound the blow

up in size in the process, we will prove an upper bound on the number of such paths. Once

again, let v → v1 → · · · → vr be the path from v to the root (= vr). Then any path from

(v, a) to (vr,1) is of the form

(v, a)→ (v1, a1)→ · · · → (vr,1)

with a ≤ a1 ≤ · · · ≤ 1 in the point-wise sense. Therefore, the number of paths from (v, a)

to the root is at most the number of sequences of “increasing” vectors a1, · · · , ar ∈ {0, 1}d.
Note that the number of such sequences is at most rd (why?) and hence the number of paths

from (v, a) to the root is at most 2d log r = 2O(d log log s). Hence the size of the resulting formula

Φ′ is at most s · 2O(d log log s).

Lemma 16.14 and Lemma 16.15 complete the proof of Theorem 16.12.

153

Part V

Separations in the monotone world

154

Chapter 17

Separating monotone circuits and

monotone ABPs

As mentioned earlier, we know that Formulas ⊆ ABP ⊆ Circuits and it is a major open

problem to show if any of these are strict containments. Currently we do not even know how

to prove super-polynomial lower bounds for any of these classes. However, we have just seen

that we have techniques to prove lower bounds in the monotone setting. A natural question

is therefore if any of these containments are strict in the monotone setting. In this chapter,

we shall see a beautiful lower bound of Hrubeš and Yehudayoff [HY16].

Theorem 17.1 (Hrubeš and Yehudayoff [HY16]). There is an explicit n-variate degree d

polynomial P that is computable by a poly(n, d) sized monotone algebraic circuit such that

any monotone algebraic ABP computing it must have size (nd)Ω(lognd).

Monotone ABPs are defined analogously to Definition 8.5, where no path computes a

monomial that is not present in the output polynomial. The above theorem show that

Monotone ABPs (Monotone Circuits.

Weakness for ABPs?

What sort of weakness can we exploit for ABPs? There are many similarities between ABPs

and circuits. Both can be homogenised without much blow-up in size. Even the frontier

decomposition for ABPs and circuits looks similar:

If f(x) is an n-variate degree d polynomial that is computable by a homogeneous

155

size s circuit, then

f =
s∑
i=1

gihi

where d
3
≤ deg(gi), deg(hi) ≤ 2d

3
for all i.

If f(x) is an n-variate degree d polynomial that is computable by a homogeneous

ABP of size s, then for any 0 ≤ k ≤ d we have

f =
s∑
i=1

gihi

where ≤ deg(gi) = k and deg(hi) = d− k for all i.

Although the above frontier decompositions look very similar, observe that for ABPs we

have a much finer control of what the degree of gi and hi are unlike for algebraic circuits.

Hrubeš and Yehudayoff [HY16] show that this “weakness” can be exploited when working

with the monotone setting.

17.1 The polynomial

Let d,m be parameters that will be set eventually (we will choose it such a way that d =

O(logm)). We shall identify [m] with the additive group Z
mZ . Let Td denote the complete

binary tree of depth d (with 2d leaves). A colouring of Td will be a function χ : V (Td)→ [m],

which just assigns colours from [m] to the vertices of the tree Td. We shall say that a

colouring χ is valid if for every internal node u with children v and w in Td the colouring

satisfies χ(u) = χ(v) + χ(w) (over Z
mZ).

Clearly, there are m2d possible valid colourings as the leaves can be assigned colours

arbitrarily and the colours of the other vertices are forced. We will now build a polynomial

from this.

LetD = 2d+1−1 = |V (Td)|, the number of vertices of Td, and let x = {xij : i ∈ [D] , j ∈ [m]}
where [D] is identified with the vertex set of Td. For a valid colouring χ : V (Td) → [m] we

assign a monomial Mon(χ) :=
∏

v∈V (Td) xvχ(v). We now define the polynomial Pm,d as follows:

Pm,d =
∑

valid colourings χ

Mon(χ)

156

This is a polynomial in m · (2d+1 − 1) of degree 2d+1 − 1. Eventually, we shall choose

d = O(logm) so this is a polynomial in poly(m) variables and degree poly(m).

Upper bound

Lemma 17.2. The polynomial Pm,d can be computed by a monotone algebraic circuit of size

poly(m, d).

Exercise 17.1 Prove this lemma.

17.1.1 Some intuition for the lower bound

What is left to show is that this polynomial cannot be computed by polynomial sized mono-

tone ABPs. If you solve the above exercise, you would see that the polynomial Pm,d can be

computed via a monotone expression of the form

Pm,d =

poly(m,d)∑
i=1

gihi

where deg gi = 2d and deg hi = 2d − 1 for all i. The property that we shall exploit is that if

Pm,d is computable by a monotone ABP, then for every 0 ≤ k ≤ 2d+1 − 1, there must be a

monotone expression computing Pm,d of the form

Pm,d =
s∑
i=1

gihi

where deg(gi) = k and deg(hi) = 2d+1 − 1 − k. We need to find the right value of k that

allows us to force s to be large (and clearly k = 2d or 2d − 1 are bad choices!). Hrubeš and

Yehudayoff [HY16]’s cool idea was to look at the isoperimetric profile of the tree and choose

k accordingly.

17.2 Isoperimetric profiles

The following definitions can be made for general graphs but we will restrict ourselves to the

tree Td as only that would be relevant here. For a parameter k ≤ |V (Td)|, we shall define

157

EIP(k) as

EIP(k) := min
S⊆V (Td)
|S|=k

∣∣E(S, S)
∣∣ .

That is, EIP(k) is the size of the smallest cut induced by a subset of exactly k vertices.

Note that if k = 2` − 1, then we can choose the subset S to be a subtree of depth ` and

the size of the cut would just be 1. So there are several values of k for which EIP(k) is really

small. But the point is that there are many other values of k for which EIP(k) is reasonably

large.

Lemma 17.3. Let k be the d-bit integer with binary representation 1010 · · · 10. For this k,

we have EIP(k) ≥ d/4.

This is not a hard proof but is certainly believable. Let us just assume this and proceed

with their proof (the interested reader can see a proof of this in the paper of Hrubeš and

Yehudayoff [HY16]). From this point onwards, whenever we use the variable k, we mean this

d-bit integer with binary representation 1010 · · · 10.

17.3 Lower bound

Suppose that Pm,d can be computed by a monotone ABP of size s. Then Pm,d must have a

monotone computation of the form

Pm,d =
s∑
i=1

gihi

that satisfies the following constraints:

Degree constraints For each i we have deg gi = k and deg hi = D − k,

Monotonicity If m1 and m2 are monomials in gi and hi respectively, then the product

m1m2 must be a monomial present in Pm,d.

Let’s just focus on one summand g · h. All the monomials in Pm,d are of the form∏
v∈V (Td) xv,cv . This in particular means that each vertex v is “represented” exactly once in

any monomial. Therefore, each vertex v ∈ V (Td) must appear in exactly one of g or h. This

naturally partitions V (Td) = V0tV1 where g only involves variables corresponding to V0 and

h only involves varaibles corresponding to V1.

158

The polynomial g (and similarly h) can now be thought of as a collection of partial

colourings of just the vertices in V0. Indeed, if
∏

v∈V0
xv,cv is a monomial in g, then this

corresponds to the partial colouring χ0 : V0 → [m] that assigns colour cv to v. Furthermore,

if χ0 is any partial colouring in g and χ1 is any partial colouring in h, it must also be the

case that χ = χ0 ∪ χ1 : V (Td) → [m] is a valid colouring. The following lemma states that

this more or less forces g and h to be quite sparse.

Lemma 17.4. Let V (Td) = V0 t V1 with |V0| = k. Let Cg be a collection of colourings from

V0 to [m] and Ch be a collection of colourings from V1 to [m]. Then,

|Cg| · |Ch| ≤ m−|E(V0,V1)|/4 · (# valid colourings of V (Td)).

Proof. Given a partition V (Td) = V0 t V1, we shall call a non-leaf vertex u ∈ Vi (where

i ∈ {0, 1}) a pure node if there is a leaf ` in the subtree rooted at u such that the entire

path from u to ` besides u consists of vertices in V1−i. That is, if u→ u1 → · · · → ur = ` is

the path, then {u, u1, u2, . . . , ur} ∩ Vi = {u}. For a pure node u, there may be many leaves

in the subtree rooted at u that is a witness to u being pure; we’ll assign one such leaf `u

arbitrarily and call them pure leaves. Let P̃ be the set of pure leaves in Td with respect to

the partition V0 t V1.

Subclaim 17.5.
∣∣∣P̃ ∣∣∣ ≥ E(V0, V1)/4.

The proof of this is not too hard (it follows from basic graph theory, contraction of edges

etc.) and we leave it as an exercise. We proceed with completing the proof of the lemma

assuming the claim. We may assume that Cg, Ch are both non-empty (for otherwise the

lemma is vacuously true). We claim that any χ0 : V0 → [m] in Cg is completely determined

by its values on (Leaves(Td) ∩ V0) \ P̃ and similarly any χ1 : V1 → [m] in Ch is completely

determined by its values on (Leaves(Td) ∩ V1) \ P̃ .

To see this fix some χ1 ∈ Ch and suppose χ0 and χ′0 are two different colourings of V0

that agree on (Leaves(Td) ∩ V0) \ P̃ . If χ0 6= χ′0, then they must disagree on a leaf in V0,

and this leaf has to be a pure leaf as we already know that χ0 and χ′0 agree on other leaves

of V0. Let this be `u ∈ P̃ where u is a pure node in V1. We will assume that this u is

minimal in the sense that for any other pure node u′ ∈ V1 in the subtree rooted at u, we

have χ0(`u′) = χ′0(`u′). Therefore, among the leaves in the subtree rooted at u, the colourings

χ0 ∪χ1 and χ′0 ∪χ1 agree on all leaves except `u. But then χ0 ∪χ1 and χ′0 ∪χ1 cannot both

be valid colourings. Therefore any colour in Cg is completely determined by the colours of

159

(Leaves(Td) ∩ V0) \ P̃ . Hence,

|Cg| · |Ch| ≤ m|(Leaves(Td)∩V0)\P̃ | ·m|(Leaves(Td)∩V1)\P̃ |

= m|Leaves(Td)|−|P̃ |

≤ m2d/m|E(V0,V1)|/4.

Exercise 17.2 Prove Subclaim 17.5.

Putting it all together

We will chose parameters now. Let d = O(logm) so that Pm,d is a polynomial on m ·D =

poly(m) variables and degree D = poly(m). From Lemma 17.2, we know that this can be

computed by a poly(m)-sized monotone algebraic circuit.

Recall that for our chosen k, Lemma 17.3 tell us that E(V0, V1) ≥ d/4 = Ω(logm). If Pm,d

can be computed by a size s monotone ABP, then Pm,d =
∑s

i=1 gihi where this expression

is monotone and deg(gi) = k and deg(hi) = D − k. Lemma 17.4 states that the degree and

monotonicity constraints force the sparsity of gi · hi to be at most m2d/md/16. Since Pm,d is

a polynomial with m2d monomials, we are forced to have s ≥ md/16 = mΩ(logm) which then

completes the proof of Theorem 17.1.

160

Chapter 18

Separation between monotone VP and

VNP

We have seen that monotone computational models are rather restrictive and we have seen

lower bounds that use just sparsity as the complexity measure (with a clever monomial

counting making use of the restrictive nature of computatation). We have seen exponential

lower bounds against monotone circuits (Theorem 8.6) and also a quasipolynomial separa-

tion between monotone ABPs and monotone circuits (Theorem 17.1). Here, we shall see a

beautiful result of Yehudayoff [Yeh18] that separates VP and VNP in the monotone world.

The definition of the class “monotone VP” is clear. The following is an analogous def-

inition of the class monotone VNP (or mon-VP). Throughout this chapter, we will restrict

ourselves to polynomials over R. Over a characteristic zero field such as R, we will work

with the standard definition of monotone models which is just that there are no negative

constants.

Definition 18.1 (Monotone VNP). A family of polynomial {fn(x)} ∈ R[x] is said to be in

monotone VNP (or mon-VNP) if there is a family of polynomials {gn(x,y)} ∈ mon-VP with

|y| = poly |x| such that

♦ f(x) =
∑

b∈{0,1}|y|
g(x,b).

We are now ready to state the main theorem.

Theorem 18.2 ([Yeh18]). There is an explicit polynomial family {fn} ∈ mon-VNP such

that any mon-VP circuit computing it must have size 2Ω(n/ logn).

161

The importance of coefficients

We already know lower bounds against monotone circuits. Can we not find a small modifi-

cation such that the lower bound is using a polynomial that is in mon-VNP? The issue with

this is that all the techniques for monotone lower bounds we have seen so far only uses the

structure of the set of monomials and not the coefficients. Any technique that uses just the

underlying set of monomials to prove a lower bound against mon-VP also necessarily yields

a lower bound against mon-VNP.

Exercise 18.1 Let Γ : F[x]→ R be a complexity measure such that

• For two polynomials f, g with the same set of monomials, Γ(f) = Γ(g),

• For any f ∈ VP, we have Γ(f) is “small”.

Show that Γ(h) is small for every h ∈ mon-VNP as well.

Therefore, it is imperative that any separation between mon-VP and mon-VNP must

necessarily use the coefficients of the underlying polynomials.

The polynomial

P (x) :=
1

2n

∑
b∈{0,1}n

n∏
i=1

n∑
j=1

bjxij

=
∑

σ:[n]→[n]

1

2|Range(σ)| · x1σ(1) · · · xnσ(n)

Lemma 18.3. The polynomial P ∈ mon-VNP.

Proof. Follows just from the definition.

Before we proceed towards describing the complexity measure, a bit of notation will help.

Some notation

The polynomial P (x) is set-multilinear with respect to rows, and any monotone model

computing this must also be set-multilinear. Therefore, all intermediate computations must

involve monomials that picks at most 1 variable from each row.

162

For a set-multilinear monomial α, let Row(α) denote the set of rows that it picks up

variables from and similarly define Col(α) analogously.

We shall say a polynomial f(x) is row-aligned if Row(α) is the same for every α ∈ f . In

such a case, define Row(f) = Row(α) for an arbitrary α ∈ f .

18.1 Structural weakness of monotone circuits

We have already seen the standard structural weakness for monotone circuits that was used

in both Section 8.2 and Chapter 17. We will use this specifically for a circuit computing a

set-multilinear polynomial such as P .

Lemma 18.4. Let C be a monotone circuit of size s computing the polynomial P (x) defined

above. Then, P (x) can be written as

P (x) =
s∑
i=1

fi(x) · gi(x) (18.5)

such that

• For each i, we have that fi and gi are row-aligned with Row(fi)tRow(gi) = [n]. Also,
n
3
≤ Row(fi),Row(gi) ≤ 2n

3
.

• fi’s and gi’s contain only non-negative coefficients,

• for any i, and any α ∈ fi and β ∈ gi, we have

fi[α] · gi[β] ≤ P [α · β]

where by h[α] we denote the coefficient of the monomial α in h.

The proof of this is exactly along the same lines as we have seen earlier and we skip it. We

can now describe the complexity measure.

We shall choose a parameter δ = O
(

1
logn

)
. Let Π : R[x]→ R[x] be the map that projects

down to only monomials that touch exactly δn columns. That is,

Π(h) =
∑
α∈h

|Col(α)|=δn

h[α] · α.

163

The complexity measure: Define Γ : R[x]→ R as

Γ(h(x)) := |Π(h)|1
=

∑
α∈h

|Col(α)|=δn

h[α],

the sum of the coefficients of monomials that touch exactly δn columns.

Given the above complexity measure, it will be useful to also have one more notation.

Let Fn,k denote the set of onto (surjective) functions from [n] to [k], and let Fn,k be the size

of this set. We will be mostly interested in k = δn.

Proposition 18.6. For δ = O
(

1
logn

)
, we have that

1

2
· (δn)n ≤ Fn,δn ≤ (δn)n.

Sketch of Proof. The upper bound is clear. As for the lower bound, notice that for δ so

small, a random function from [n] to [δn] would be onto with probability at least 1/2.

Lemma 18.7. (Upper bound for the polynomial) For the polynomial defined above,

Γ(P) =

(
n

δn

)
· 2−δn · Fn,k.

18.2 Upper bounding measure on building blocks

The strategy is the usual plan of bounding the measure for each building block in (18.5).

The following is the main technical lemma.

Lemma 18.8 (Main technical lemma). Let f(x) and g(x) be row-aligned polynomials such

that

• Row(f) t Row(g) = [n],

• n
3
≤ Row(f),Row(g) ≤ 2n

3
,

• For each α ∈ f and β ∈ g, we have f [α] · g[β] ≤ P (α · β).

164

Then,

Γ(f · g) ≤ 2−Ω(δn) · Γ(P).

Clearly Theorem 18.2 follows readily from the above lemma. The rest of this chapter will

be spent on the proof of this lemma. To make it a little easier to follow, we denote certain

terms in red to indicate that the primary gain is coming from that term. Let ε = 1/20. We

will call a monomial α to be “thin” if |Col(α)| ≤ (1− ε)δn, and “wide” otherwise. We shall

split Γ(f · g) into three sums.

Γ(f · g) :=
∑

S∈([n]
δn)

∑
α,β

Col(α·β)=S

f [α] · g[β]

≤
∑

S∈([n]
δn)

∑
α,β

Col(α·β)=S
α thin

f [α] · g[β] (T1, involving thin α’s)

+
∑

S∈([n]
δn)

∑
α,β

Col(α·β)=S
β thin

f [α] · g[β] (T2, involving thin β’s)

+
∑

S∈([n]
δn)

∑
α,β

Col(α·β)=S
α, β wide

f [α] · g[β]. (T3, the rest)

We will address the three terms seperately and show that each of them are substantially

smaller than Γ(P). It is easier to handle the thin terms first, as this follows just from the

fact that the number of such terms is small.

Claim 18.9. T1 + T2 ≤ 2−Ω(n) · Γ(P).

Proof. The main point is that there are not-too-many ways of splitting a monomial touching

δn columns into two parts where one is thin. Fix a set S and let us estimate T1 (the term T2

is identical). The number of different ways of choosing α and β that cover columns S with

α being thin is at most(
δn

< (1− ε)δn

)
· ((1− ε)δn)|Row(f)| · (δn)|Row(g)|

≤
(

δn

< (1− ε)δn

)
· (1− ε)n/3 · (δn)n

≤ 2−Ω(n) · (δn)n

165

≤ 2−Ω(n) · Fn,δn. (Proposition 18.6)

Summing over all such S, and using the fact that f [α] · g[β] < P [α · β] = 2−δn, we have

T1 + T2 ≤
(
n

δn

)
· 2−Ω(n) · Fn,δn · 2−δn

≤ 2−Ω(n) · Γ(P) (Lemma 18.7).

We are now left with the tricky part of estimating T3. The rough intuition is the following.

If we pick two “typical” monomials α and β, neither of which are thin, then α · β would

touch about 2(1 − ε)δn columns as they would likely be disjoint. The coefficients of such

monomials in P is just 2−2(1−ε)δn. Since we must ensure that f [α] ·g[β] = P [α ·β] = 2−2(1−ε)δn

for all such α, β, both f and g must typically assign no more than 2−(1−ε)δn for f [α], g[β].

But in that case, when we pick typical α, β that touch the same set of δn columns, then

f [α] · g[β] would be about 2−2(1−ε)δn though P [α · β] = 2−(1−ε)δn which is much larger.

On the other hand, if f [α] is much large for a specific α, then we are forced to have g[β]

quite small for any β that touches columns disjoint from α. Eventually we wish to “cover”

the coefficient of monomials of P that touch δn columns as much as possible. Hence f and

g have conflicting requirements on what should be assigned to its coefficients, and we want

to exploit this.

Without loss of generality, we may assume (by scaling f and g by scalars if required)

that

max
α∈f

δn≥|Col(α)|≥(1−ε)δn

f [α] = max
β∈g

δn≥|Col(β)|≥(1−ε)δn

g[β] =: M.

Case 1: M ≤ 2−(1−ε)δn. In this case, we can plug this in our bounds directly.

T3 =
∑

S∈([n]
δn)

∑
α,β

Col(α·β)=S
α, β wide

f [α] · g[β] ≤
(
n

δn

)
· (δn)n · 2−2(1−ε)δn

≤
(
n

δn

)
· 1

2
· Fn,δn · 2−2(1−ε)δn (Proposition 18.6)

≤
(
n

δn

)
· 2−δn · Fn,δn · 2−Ω(δn)

166

≤ 2−Ω(δn) · Γ(P1) (Lemma 18.7).

Case 2: M > 2−(1−ε)δn. Let α0 ∈ f and β0 ∈ g be such that

f [α0], g[β0] ≥ 2−(1−ε)δn.

Note that Col(α0 · β0) ≤ 2δn and hence there are many columns that are untouched by

α0 or β0. Therefore, if we pick a random δn sized set S at random, we should expect to

have an intersection of at most (2δ) |S| with Col(α0β0). The following is a straightforward

application of the Chernoff’s bound.

Claim 18.10.

Pr
S∈([n]

δn)
[|S ∩ Col(α0β0)| > (2δ + ε) |S|] ≤ 2−Ω(δn).

We will call a set S to be typical if |S ∩ Col(α0β0)| ≤ (2δ+ ε)δn, and atypical otherwise.

The above claim quantifies the fact that there aren’t too many atypical sets. Then,

T3 =
∑

S∈([n]
δn)

∑
α,β

Col(α·β)=S
α,β not thin

f [α] · g[β]

=
∑

S∈([n]
δn)

typical

∑
α,β

Col(α·β)=S
α,β not thin

f [α] · g[β] +
∑

S∈([n]
δn)

atypical

∑
α,β

Col(α·β)=S
α,β not thin

f [α] · g[β]

≤
∑

S∈([n]
δn)

typical

∑
α,β

Col(α·β)=S
α,β not thin

f [α] · g[β] +
∑

S∈([n]
δn)

atypical

∑
α,β

Col(α·β)=S
α,β not thin

P [α · β]

≤
∑

S∈([n]
δn)

typical

∑
α,β

Col(α·β)=S
α,β not thin

f [α] · g[β] + 2−Ω(δn) · Γ(P).

Note that, for any typical S, we have that Col(α0) intersects S at at most (2δ + ε)δn.

Therefore, Col(α0) has at least (1− ε− (2δ − ε))δn columns that are not in Col(β).

g[β] ≤ P [α0β]

f [α0]
≤ 2−(1−2ε−2δ)δn ≤ 2−

2δn
3 ,

167

and a similar bound applies for f [α]. Therefore,

T3 ≤
∑

S∈([n]
δn)

typical

∑
α,β

Col(α·β)=S
α,β not thin

2−
δn
3 · 2−δn + 2−Ω(δn)Γ(P)

≤ 2−
δn
3 · Γ(P) + 2−Ω(δn) · Γ(P) = 2−Ω(δn)Γ(P).

This completes the bound for Case 2, and thus concludes the proof of Lemma 18.7 and

hence Theorem 18.2.

168

Part VI

Lower bounds for depth four circuits:

Shifted partial derivatives

169

Chapter 19

Lower bounds for depth-4 circuits

with bounded bottom fan-in

This chapter shall address a recent technique for proving lower bounds for some depth-4

circuits.

Definition 19.1. A depth-4 circuit, also referred to as a ΣΠΣΠ circuit, computes a poly-

nomial of the form

f = Q11 . . . Q1d + · · · + Qs1 . . . Qsd.

The number of summands s is called the top fan-in of the circuit.

Further, a ΣΠ[a]ΣΠ[b] circuit is a depth-4 circuit computing a polynomial of the form

f = Q11 . . . Q1a + · · · + Qs1 . . . Qsa where degQij ≤ b for all i, j.

♦

19.1 Significance of the model

In a surprising series of results on depth reduction, Agrawal and Vinay [AV08] and subsequent

strengthenings of Koiran [Koi12] and Tavenas [Tav15] showed that depth-4 circuits more or

less capture the complexity of general circuits.

Theorem 19.2 ([AV08, Koi12, Tav15]). If f is an n variate degree-d polynomial computed

by a size s arithmetic circuit, then f can also be computed by a ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit of

170

size exp
(
O(
√
d log s)

)
.

Conversely, if an n-variate degree-d polynomial requires ΣΠ[O(
√
d)]ΣΠ[

√
d] circuits of size

exp
(

Ω(
√
d log s)

)
, then it requires arbitrary depth arithmetic circuits of size nΩ(log s/ logn) to

compute it.

Thus proving strong enough lower bounds for this special case of depth-4 circuits imply

lower bounds for general circuits. The main results of the section is some recent lower bound

[GKKS14, KSS14, FLMS15] that comes very close to the required threshold.

19.2 Building the complexity measure

As a simpler task, let us first attempt to prove lower bounds for expressions of the form

f = Qd
1 + · · · + Qd

s

where each of the Qi’s are quadratics. This is exactly the problem studied by Kayal [Kay12],

which led to the complexity measure for proving depth-4 lower bounds.

The goal is to construct a measure Γ such that Γ(f) is small whenever f is a power of a

quadratic. As a first attempt, let us look at the space of k-th order partial derivatives of Qd

(for a suitable choice of k). Unlike the case of Σ∧Σ-circuits where the the space of k-th order

partial derivatives of `d had dimension 1, the space of partial derivatives of Qd could be as

large as it can be expected. Nevertheless, the following simple observation would provide

the key intuition.

Observation 19.3. Any k-th order partial derivative of Qd is of the form Qd−kp where p is

a polynomial of degree at most k. Hence, if k � d, then all k-th order partial derivatives of

Qd share large common factors.

This suggests that instead of looking at linear combinations of the partial derivatives of

Qd, we should instead be analysing low-degree polynomial combinations of them.

Definition 19.4. Let ∂=k(f) refer to the set of all k-th order partial derivatives of f , and

x≤` refer to the set of all monomials of degree at most `. The shifted partials of f , denoted

by
〈
∂=k (f)

〉
≤`, is the vector space spanned by

{
x≤` · ∂=k(f)

}
. The dimension of this space

shall be denoted by Γ
[Kay]
k,` (f). ♦

171

x=` · ∂=k

Monomials of degree `+ d− k

m

xα · ∂xβ

coefficient of m in xα∂xβ(f)

The above observation shows that any element of
〈
∂=k

(
Qd
)〉
≤` is divisible by Qd−k and

we thereby have the following lemma.

Lemma 19.5. If f = Qd where Q is a quadratic, then Γ
[Kay]
k,` (f) ≤

(
n+k+`
n

)
, the number of

monomials of degree (k + `).

Note that if f was instead a random polynomial, we would expect the measure dim
(〈
∂=k (f)

〉
≤`

)
to be about

(
n+k
n

)
·
(
n+`
n

)
, which is much larger than

(
n+k+`
n

)
for suitable choice of k, `. Hence

this measure Γ
[Kay]
k,` is certainly potentially useful for this model. Very similar to the above

lemma, one can also show the following upper bound for the building blocks of ΣΠ[a]ΣΠ[b]

circuits.

Lemma 19.6. Let f = Q1 . . . Qa with degQi ≤ b for all i. Then,

Γ
[Kay]
k,` (f) = dim

(〈
∂=k (f)

〉
≤`

)
≤

(
a

k

)(
n+ (b− 1)k + `

n

)
.

It is easy to check that Γ
[Kay]
k,` is a sub-additive measure, and we immediately have this

corollary.

Corollary 19.7. Let f be an n-variate polynomial computed by a ΣΠ[a]ΣΠ[b] circuit of top

fan-in s. Then,

Γ
[Kay]
k,` (f) ≤ s ·

(
a

k

)(
n+ (b− 1)k + `

n

)
.

Or in other words for any choice of k, `, we have that any ΣΠ[a]ΣΠ[b] circuit computing a

polynomial f must have top fan-in s at least

Γ
[Kay]
k,` (f)(

a
k

)(
n+(b−1)k+`

n

) .

172

Intuition from algebraic geometry

Another perspective for the shifted partial derivatives comes from algebraic geometry. Any

zero a ∈ Fn of Q is a zero of multiplicity d of Qd. This implies that the set of common zeroes

of all k-th order partial derivatives of Qd (for k ≈
√
d) is large. On the other hand if f is a

random polynomial, then with high probability there are no roots of large multiplicity.

In algebraic geometry terminology, the common zeroes of a set of polynomials is called

the variety of the ideal generated by them. Further there is also a well-defined notion of a

dimension of a variety which measures how large a variety is. Let F[x]≤r refer to the set

of polynomials of degree at most r, and let γI(r) = dim (I ∩ F[x]≤r). Intuitively, if γI(r) is

large, then there are many constraints and hence the variety is small. In other words the

growth of γI(r) is inversely related to the dimension of the variety of I, and this is precisely

captured by what is known as the Affine Hilbert function of I. More about the precise

definitions of the Affine Hilbert function etc. can be found in any standard text in algebraic

geometry such as [CLO07].

In our setting, the ideal we are interested in is I =
〈
∂=kf

〉
. If f is a homogeneous

polynomial, then I ∩ F[x]≤r =
〈
∂=k (f)

〉
≤` where ` = r − (deg(f)− k). Hence studying the

dimension of shifted partial derivatives is exactly studying γI(r) which holds all information

about the dimension of the variety.

19.3 Lower bounding shifted partials of explicit poly-

nomials

For a random polynomial R(x), we would expect that

Γ
[Kay]
k,` (R) ≈ min

{(
n+ `+ d− k

n

)
,

(
n+ k

n

)(
n+ `

n

)}
.

The terms on the RHS correspond to trivial upper bounds, where first term is the total

number of monomials of degree (`+ d− k) and the second term is the total number shifted

partials.

Claim 19.8. For k = ε
√
d for a small enough ε > 0, and ` = cn

√
d

logn
for a large enough

173

constant c, we have

min
{(

n+`+d−k
n

)
,
(
n+k
n

)(
n+`
n

)}(
O(
√
d)

k

)(
n+(
√
d−1)k+`
n

) = 2Ω(
√
d logn).

The proof of this claim is easily obtained by using standard asymptotic estimates of bi-

nomial coefficients. Note that using Corollary 19.7, the above claim shows that if we can

find an explicit polynomial whose dimension of shifted partials are as large as above, then

we would have an exp(Ω(
√
d log n)) lower bound for the top fan-in of ΣΠ[

√
d]ΣΠ[

√
d] circuits

computing this polynomial.

If we have a set of polynomials with distinct leading monomials, then they are clearly lin-

early independent. Hence one way of lower bounding the dimension of a space of polynomials

is to find a sufficiently large set of polynomials with distinct monomials in the space. The

vector space of polynomials we are interested is
〈
∂=k (f)

〉
≤`, and if we choose a structured

polynomial f we can hope to be able to estimate the number of distinct leading monomials

in this vector space.

19.3.1 Shifted partials of the determinant and permanent

The first lower bound for ΣΠ[
√
d]ΣΠ[

√
d] circuits was by Gupta, Kamath, Kayal and Sapthar-

ishi [GKKS14] for the determinant and the permanent polynomial. We shall describe

the lower bound for Detn, although it would carry over immediately to Permn as well.

As mentioned earlier, we wish to estimate the number of distinct leading monomials in〈
∂=k (Detn)

〉
≤` = span

{
x≤`∂=k Detn

}
. [GKKS14] made a relaxation to merely count the

number of distinct leading monomials among the generators
{
x≤`∂=k Detn

}
instead of their

span.

The first observation is that any k-th order partial derivative of Detn is just an (n− k)×
(n− k) minor. Let us fix a monomial ordering induced by the lexicographic ordering on the

variables:

x11 � x12 · · · � x1n � x21 � · · · � xnn.

Under this ordering, the leading monomial of any minor is just the product of variables on the

main diagonal of the sub-matrix corresponding to the minor, and hence is a term of the form

xi1j1 . . . xi(n−k),j(n−k)
where i1 < · · · < in−k and j1 < · · · < jn−k; let us call such a sequence of

174

indices as an (n − k)-increasing sequences in [n] × [n]. Further, for any (n − k)-increasing

sequence, there is a unique minor M whose leading monomial is precisely the product of the

variables indexed by the increasing sequence. Therefore, the task of lower bounding distinct

leading monomials in
{
x≤`∂=k Detn

}
reduces to the following combinatorial problem.

Claim 19.9. For any k, ` > 0, we have

Γ
[Kay]
k,` (Detn) ≥ #

{
monomials of degree (`+ n− k) that

contain an (n− k)-increasing sequence

}
.

We could start with an (n−k)-increasing sequence, and multiply by a monomial of degree

` to obtain a monomial containing an increasing sequence. Of course, the issue is that this

process is not invertible and hence we might overcount. To fix this issue, [GKKS14] assign a

canonical increasing sequence to every monomial that contains an increasing sequence and

multiply by monomials of degree ` that do not change the canonical increasing sequence.

Definition 19.10. Let D2 = {x1,1, . . . , xn,n, x1,2, x2,3, . . . , xn−1,n}, the main diagonal and the

diagonal just above it. For any monomial m define the canonical increasing sequence of m,

denoted by χ(m), as (n− k)-increasing sequence of m that is entirely contained in D2 and is

ordered highest according to the ordering ’�’. If m contains no (n− k)-increasing sequence

entirely in D2, then we shall say the canonical increasing sequence is empty. ♦

The reason we restrict ourselves to D2 is because it is easier to understand which mono-

mials change the canonical increasing sequence and which monomials do not.

Lemma 19.11. Let S be an (n−k)-increasing sequence completely contained in D2, and let

mS be the monomial obtained by multiplying the variables indexed by S. There are at least

(2(n − k) − 1) variables in D2 such that if m is any monomial over these variables, then

χ(mS) = χ(m ·mS).

Proof. Note that for any xi,j ∈ D2 other than xn,n, exactly one of xi+1,j or xi,j+1 is in D2

as well; let us refer to this element in D2 as the companion of xi,j. It is straightforward to

check that for any (n − k)-increasing sequence S, the elements of S and their companions

do not alter the canonical increasing sequence.

It is a simple exercise to check that the number of (n−k)-increasing sequences contained

in D2 is
(
n+k
2k

)
. Further, as we are free to use the n2 − 2n + 1 variables outside D2, and

the 2(n − k) − 1 variables that don’t alter the canonical increasing sequence, we have the

following lemma.

175

Lemma 19.12. For any k, ` ≥ 0,

dim
(〈
∂=k (Detn)

〉
≤`

)
≥

(
n+ k

2k

)(
(n2 − 2n+ 1) + 2(n− k)− 1 + `

`

)
.

Although this lower bound is not as large as expected for a random polynomial, this is

still sufficient to give strong lower bounds for depth-4 circuits. By choosing k = ε
√
n for a

small enough ε > 0, and ` = n2
√
n, Lemma 19.12 with Corollary 19.7 yields the lower bound

of Gupta, Kamath, Kayal and Saptharishi [GKKS14]

Theorem 19.13. Any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing Detn or Permn has top fanin

2Ω(
√
n).

It is worth noting that although Claim 19.8 suggests that we should be able to obtain a

lower bound of exp(Ω(
√
n log n)) for Detn, [GKKS14] also showed that the above estimate

for the dimension of shifted partial derivatives for the determinant is fairly tight. Hence

the dimension of shifted partials cannot give a stronger lower bound for the determinant

polynomial. However, it is possible that the estimate is not tight for the permanent and the

dimension of shifted partial derivatives of the permanent is provably strictly larger than that

of the determinant! It is conceivable that one should be able to prove an exp(Ω(
√
n log n))

lower bound for the permanent using this measure.

Indeed, subsequently an exp(Ω(
√
d log n)) was proved [KSS14, FLMS15] for other explicit

polynomials which we now outline.

19.3.2 Shifted partials of the Nisan-Wigderson polynomial

Very shortly after [GKKS14]’s 2Ω(
√
n) lower bound, Kayal, Saha and Saptharishi [KSS14] gave

a stronger lower bound for a different polynomial. Their approach was to engineer an explicit

polynomial F for which the dimension of shifted partial derivatives is easier to estimate. The

main idea was that, if any k-th order partial derivative of the engineered polynomial is a

monomial, then once again estimating dim
(〈
∂=k (F)

〉
≤`

)
reduces to a monomial counting

problem. If we could ensure that no two monomials of F have a gcd of degree k or more, then

we would immediately get that all k-th order partial derivatives of F are just monomials

(albeit possibly zero). If we were to interpret the set of non-zero monomials of F as just

subsets over the variables, then the above constraint can be rephrased as a set system

with small pairwise intersection. Such systems are well studied and are known as Nisan-

Wigderson designs [NW94]. With this in mind, [KSS14] studied the following polynomial

176

family inspired by an explicit construction of a Nisan-Wigderson design. The definition

below is a specialization of Definition 2.4.

Definition 19.14 (Nisan-Wigderson Polynomial). . Let n be a power of 2 and let Fn be the

finite field with n elements that are identified with the set {1, . . . , n}. For any 0 ≤ k ≤ n,

the polynomial NWk is a n2-variate polynomial of degree n defined as follows:

NWk(x1,1, . . . , xn,n) =
∑

p(t) ∈ Fn[t]
deg(p) < k

x1,p(1) . . . xn,p(n).

♦

We recall the main observation about the set of monomials of the Nisan-Wigderson

polynomial which is the low pairwise-intersection property.

Observation 19.15. Any two monomials of NWk intersect in less than k variables. Hence,

any k-th order partial derivative of NWk(x) is a monomial (which could possibly be zero).

Hence, the problem of lower bounding the shifted partials of NWk reduces to the problem

of counting distinct monomials of degree `+d−k that are divisible by one of these k-th order

derivatives. [KSS14] additionally used the observation that two random k-th order partial

derivatives of NWk are monomials that are far from each other. Using this, they estimate the

number of distinct shifts of these monomials and showed that the dimension of shifted partial

derivatives of NWk is very close to the trivial upper bound as in Claim 19.8. We sketch

the argument by Chillara and Mukhopadhyay [CM14]. Formally, for any two multilinear

monomials m1 and m2, let the ∆(m1,m2) denote min {|m1| − |m1 ∩m2|,m2 − |m1 ∩m2|}
(abusing notation by identifying the multilinear monomials with the set of variables that

divide it).

Lemma 19.16 ([CM14]). Let m1, . . . ,ms be monomials over N variables such that ∆(mi,mj) ≥
d for all i 6= j. Then the number of distinct monomials that may be obtained by multiplying

some mi by arbitrary monomials of degree ` is at least s
(
N+`
N

)
−
(
s
2

)(
N+`−d
N

)
.

Proof. For i = 1, . . . , s, let Ai be the set of monomials that can be obtained by multiplying

mi with a degree ` monomial. By inclusion-exclusion,∣∣∣∣∣
s⋃
i=1

Ai

∣∣∣∣∣ ≥
s∑
i=1

|Ai| −
∑
i<j

|Ai ∩ Aj| .

177

Note that each Ai is of size exactly
(
N+`
N

)
. Further, since ∆(mi,mj) ≥ d, any monomial that

is divisible by mi and mj must necessarily be divisible by mi and the variables in mj not in

mi. Hence, |Ai ∩ Aj| ≤
(
N+`−d
N

)
. The lemma follows by substituting these above.

Note that any two distinct monomials of NWk intersect in at most k places. For each

monomial mi of NWk, let m′i be any non-zero k-th order partial derivative of mi. Therefore,

∆(m′i,m
′
j) ≥ n − 2k ≥ n

2
for k = ε

√
n. Since we have nk monomials of pairwise distance

at least n/2, the above lemma immediately yields a lower bound for the shifted partials of

NWk.

Theorem 19.17 ([KSS14]). Let k = ε
√
d for some constant ε > 0. Then for any ` =

Θ
(
n2√n
logn

)
,

dim
(〈
∂=k (NWk)

〉
≤`

)
≥ nk

2
·
(
n2 + `

n2

)
Sketch of Proof. As mentioned earlier, we have nk monomials {m′i} with pairwise distance

at least n
2
. Using Lemma 19.16, it suffices to show that

nk ·
(
n2 + `

n2

)
≥ 2 ·

(
nk

2

)
·
(
n2 + `− n

2

n2

)
and this follows easily from standard binomial coefficient estimates.

Combining with Corollary 19.7, we have the lower bound of [KSS14] using standard

estimates.

Theorem 19.18 ([KSS14]). Any ΣΠ[O(
√
n)]ΣΠ[

√
n] computing the NWk polynomial, where

k = ε
√
n for a sufficiently small ε > 0, must have top fan-in exp(Ω(

√
n log n)).

[KSS14] used the above lower bound to give an nΩ(logn) lower bound for a subclass of

formulas called regular formulas. The interested reader can refer to [KSS14] for more details.

19.3.3 Shifted partials of the Iterated-matrix-multiplication poly-

nomial

Fourier, Limaye, Malod and Srinivasan [FLMS15] showed the same lower bound as [KSS14]

but for the iterated matrix multiplication polynomial which is known to have polynomial

sized circuits computing it. Let’s recall the definition from Chapter 2

178

Definition (Iterated matrix multiplication polynomial). Let M1, . . . ,Md be n× n matrices

with distinct variables as entries, i.e. Mk =
((
x

(k)
ij

))
i,j≤n

for k = 1, . . . , d. The polynomial

IMMn,d is a (n2d)-variate degree-d polynomial defined as the (1, 1)-th entry of the matrix

product M1 . . .Md:

IMMn,d(x) = (M1 . . .Md)1,1 .

♦

A more useful perspective is to interpret this as a canonical algebraic branching program,

which we recall again.

Definition (Algebraic branching program). An algebraic branching program (ABP) com-

prises of a layered directed graph G with (d + 1) layers of vertices, where the first and last

layer consists of a single node (called source and sink respectively), all other layers consist

of n vertices, and edges are only between successive layers and have linear polynomials as

edge-weights. The ABP is set to compute the polynomial f defined as

f(x) =
∑

source-sink path ρ

weight(ρ)

where the weight of any path is just the product of the edge weights on the path. ♦

The canonical ABP comprises of the graph where the i-th vertex of layer (`− 1) is con-

nected to the j-th vertex of layer ` with edge-weight x
(`)
ij for every choice of i, j and `. It is

easy to see that the polynomial computed by the canonical ABP is in fact IMMn,d.

To lower bound the dimension of shifted partial derivatives of IMMn,d, firstly note that a

derivative with respect to any variable (or edge) simply results in the sum of all source-sink

paths that pass through this edge. [FLMS15] use the following simple but crucial observation

to assist in bounding the dimension of shifted partials.

Observation 19.19. Assume that d is even. Let e1, e3, . . . , ed−1 be an arbitrary set of edges

such that ei is between layer i and i + 1. Then, there is a unique path from source to sink

that passes through all these edges.

Proof. Since these are edges in alternate layers, their starting and ending points uniquely

determine the edges that are picked up from the even-numbered layers to complete the

source-sink path.

Since we are interested in k-th order derivatives for k ≈ ε
√
d, [FLMS15] consider the

179

following restriction by removing some edges from the underlying graph:

• Select (2k − 1) layers `1, . . . , `2k−1 that are roughly equally spaced between the first

and the last layer. These layers, and the first and the last layers, shall be untouched

and shall be called pristine layers.

• In all the other layers, retain only those edges connecting vertex i of this layer to vertex

i of the next.

This restriction effectively makes the graph similar to an ABP with 2k + 1 layers. Let the

polynomial computed by the restricted ABP be IMM′n,d(x). Since IMM′n,d was obtained by

just setting some variables of IMMn,d to zero, the dimension of shifted partial derivatives of

IMM′n,d can only be smaller than that of IMMn,d. Similar to Observation 19.19, we have the

following observation.

Observation 19.20. For every choice of k edges from odd-numbered pristine layers, there

is a unique source-sink path that passes through them.

In other words, for any choice of k variables chosen by picking one from each odd-

numbered pristine layer, then the k-th order partial derivative of IMM′n,d with respect to

these k variables is a non-zero monomial.

Once again, we can lower bound the dimension of shifted partial derivatives of IMM′n,d by

a monomial counting problem. Similar to the earlier case, [FLMS15] show that the monomials

thus obtained are far from one another. We state their main lemma below without proof.

Lemma 19.21 ([FLMS15]). There are at least nk/2 monomials of IMM′n,d of pairwise dis-

tance at least n
4
.

Again, using Lemma 19.16 and standard binomial coefficient estimates, this implies that

the shifted partial derivatives of IMM′n,d is almost as large as the trivial upper bound.

Theorem 19.22 ([FLMS15]). Let k = ε
√
d for a sufficiently small ε > 0 and ` be an integer

such that n1/16 ≤ N+`
`
≤ n1/4 where N is the number of variables IMM′n,d depends on. Then,

dim
(〈
∂=k (IMMn,d)

〉
≤`

)
≥ dim

(〈
∂=k

(
IMM′n,d

)〉
≤`

)
= Ω

(
nk/2 ·

(
N + `

`

))
.

180

Combining with Corollary 19.7, we get the lower bound of [FLMS15].

Theorem 19.23 ([FLMS15]). Any ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit computing IMMn,d, with d ≤ nδ

for a sufficiently small δ > 0, has top fan-in exp(Ω(
√
d log n)).

Similar to [KSS14], the above result also implies nΩ(logn) lower bounds for regular formulas

computing IMMn,d.

19.4 A bottom fan-in hierarchy theorem

Subsequent to these results, Kumar and Saraf [KS14b] showed finer separations even within

the class of depth-4 circuits with small bottom fan-in. We state the result below without

proof.

Theorem 19.24 ([KS14b]). For any t satisfying log n � t ≤ d
40

, we can construct n-

variate degree d polynomials that are computable by homogeneous ΣΠΣΠ[t] such that any

homogeneous ΣΠΣΠ[t/20] circuit computing it requires size nΩ(d/t).

181

Chapter 20

Lower bounds for homogeneous depth

four circuits

The model for which we shall be interested in proving lower bounds are homogenous depth

four circuits. These circuits compute polynomials of the form

f =
∑
i

Qi1 . . . Qiai

where each Qij is a homogeneous polynomial. This immediately forces that
∑ai

j=1 deg(Qij) =

deg(f) for all i.

Goal. Find an explicit polynomial f (of degree d, and over n variables) such that any

homogeneous depth four circuit requires size nΩ(
√
d). That is, if

f =
∑
i

Qi1 . . . Qiai

for homogeneous polynomials Qij’s, then the total number of monomials present among the

Qij’s must be nΩ(
√
d).

Intuition towards the measure - (1)

Consider an expression of the form

C =
s∑
i=1

Qi1 . . . Qiai

182

We shall call a summand Qi1 . . . Qiai good if the degree of each Qij ≤
√
d. Let us split the

above sum into good terms and the rest.

C1 =

s1∑
i=1

Qi1 . . . Qiai where deg(Qij) ≤
√
d for all i, j (20.1)

C2 =
s∑

i=s1+1

Qi1 . . . Qiai where deg(Qi1) >
√
d for all i > s1 (20.2)

If one were to just prove a lower bound for (20.1), then using the dimension of shifted

partial derivatives we can obtain a lower bound of nΩ(
√
d). Hence let us focus on an expression

of the form (20.2) and see if we can come up with a measure that gives a nΩ(
√
d) lower bound

there as well.

Starting with (2), let us expand each Qi1 as a sum of monomials to obtain an expression

of the form

C2 =
s′∑
i=1

mi ·Q′i

where each mi is a monomial of degree greater than
√
d, and Q′i some polynomial of degree

d−deg(mi). The number of summands s′ would be at most the size of the circuit we started

out with.

Key Idea: Suppose the polynomial C2 was multilinear, i.e. the degree in each variable

is bounded by 1. Further, say s′ ≤ n
√
d/10. Apply a random restriction ρ on the variables by

setting each variable independently to zero with probability p < 1
n1/20 .

If m was any monomial that was divisible by
√
d disjoint variables, then ρ(m) 6= 0 with

probability at most 1

n
√
d/20

. Hence, the probability that ρ(mi) 6= 0 for some i ≤ s′ that is

divisible by
√
d variables is at most 1

n
√
d/10

. Hence, the only terms that would survive on the

RHS are terms of the form ρ(mi ·Q′i) where mi is divisible by at most
√
d distinct variables.

But recall that deg(mi) >
√
d and this implies that mi is non-multilinear. If that is the

case, then every monomial on the RHS is non-multilinear! Thus as long as ρ(C2) 6= 0, there

would be at least one multilinear monomial that survives. This would contradict our original

assumption that s′ ≤ n
√
d/10, giving us the lower bound we were after.

Thus, the measure for the sum of good terms is the dimension of shifted partial deriva-

183

tives. The measure for the sum of non-good terms was the number of non-zero multilinear

monomials after a random restriction. Hopefully some combination of these measures would

give us a measure for their sum.1

Intuition towards the measure - (2)

The idea of using random restrictions as defined above essentially kills all monomials that are

divisible by ‘too many’ variables. Let us consider an extreme case where every monomials

in each Qij is just a power of a single variable. We shall first try to prove a lower bound for

expression of the form

C =
∑
i

Qi1 · · ·Qiai

where every monomial in any Qij is a power of a single variable, i.e. each Qij is a sum of

univariate polynomials.

Define the operator MultiQuad that acts on any polynomial Q such that MultiQuad(Q)

is just the sum of monomials of Q of degree at most 2 in every variable. Then,

C =
∑
i

MultiQuad(Qi1) · · ·MultiQuad(Qiai) + other terms

= C1 + C2

Notice that C1 corresponds to a ΣΠ[d/2]ΣΠ[2] circuit since we assume that each Qij is a

sum of univariates. The dimension of shifted partial derivatives would yield a lower bound for

such ΣΠ[d/2]ΣΠ[2] circuits. But what really happens to C2 as we take some partial derivative?

Key Observation. For any multilinear monomial m, the partial derivative ∂m(C2)

only consists of non-multilinear monomials.

Thus, this points towards the following modification of the traditional dimension of shifted

partial derivatives:

For any polynomial P , look at the set of polynomials of obtained as m1 · ∂m2(P)

where m1 and m2 are multilinear monomials of a certain degree, and compute the

dimension of the multilinear component of these polynomials i.e. erase all mono-

1There are some instances when this strategy can fail spectacularly. See [KS14b]

184

mials that are non-multilinear and then compute the dimension of the residual

polynomials.

This basically allows us to completely ignore the contribution of C2 as we have that multi-

linear component of m1∂m2(C2)) is zero for every m1 and m2 that are multilinear.

Both these point us to a modification of the shifted partials, which [KLSS17, KS14c] refer

to as projected shifted partial derivatives.

Definition 20.3 (Projected Shifted Partial Derivatives). Fix parameters k, ` > 0. For any

polynomial P , the set of projected shifted partials of P , denoted by PSDk,`(P) is defined as

follows

PSDk,`(P) =

{
mult(m1 · ∂m2(P)) :

deg(m1) = ` , deg(m2) = k,

m1 and m2 are multilinear

}

where mult(f) refers to the polynomial f projected to only the multilinear monomials of f .

The measure ΓPSD
k,` (P) is defined as the dimension of the above set of polynomials, i.e.

♦ ΓPSD
k,` (P) = dim (span(PSDk,`))

x=` · ∂=k

Multilinear monomials of degree `+ d− k

m

xα · ∂xβ

coefficient of m in xα∂xβ(f)

The works of [KLSS17, KS14c] use this measure to prove a lower bound for “low-support

depth 4 circuits”. As sketched earlier, the task of proving lower bounds for general homo-

geneous depth 4 circuits can be reduced to the low-support depth 4 circuits via random

restrictions.

185

20.1 Reducing to ‘low-support’ depth 4 circuits

We have already seen a sketch of how this can be done via a random restriction but let us

formalize this as a lemma.

Lemma 20.4. Let P be an n-variate degree d polynomial computed by a homogeneous depth

4 circuit C of size s ≤ nc
√
d, for some c > 0. Let ρ be a random restriction that sets

each variable to zero independently with probability 1− 1/n2c. Then with probability at least

(1− 1/s), the polynomial ρ(P) is computed by a homogeneous depth 4 circuit C ′ with bottom

support at most
√
d and size at most s.

Proof. Let {m1, . . . ,mr} be the set of all monomials computed at the lowest layer of the

depth 4 circuit C that are divisible by more than
√
d distinct variables. Since the size of C

is at most s, we also have that r ≤ s. Then,

∀i ∈ [r] Pr[ρ(mi) 6= 0] ≤ 1

n2c
√
d

=⇒ Pr[∃i : ρ(mi) 6= 0] ≤ r

n2c
√
d
≤ 1

nc
√
d
≤ 1

s

Thus, with probability at least (1− 1/s), all the large support monomials are killed and C

reduces to a homogeneous depth 4 circuit of bottom support at most
√
d.

20.1.1 Handling random restrictions

The previous section outlined how in essence, it would suffice to try and find an explicit

polynomial for which we can prove a good enough lower bound for bounded bottom-support

depth 4 circuits. Let us say that we have found an explicit polynomial g that requires depth

4 circuits of size at least n
√
d/100. Are we done? Let us write things down formally to see

exactly what we need.

Say the polynomial we wish to show requires large homogeneous depth 4 circuits is f .

Let us assume on the contrary that f can be computed by homogeneous depth 4 circuits of

size s < n
√
d/10000. Then, by Lemma 20.4, ρ(f) can be computed by a homogeneous depth 4

circuits of bottom support bounded by
√
d/1000 of size s. We want to be able to say that

this is a contradiction. We might be able to say that if ρ(f) has g as a projection, that is,

but setting more variables to zero in ρ(f) we obtain g.

Both the results of [KLSS17] and [KS14c] proceed by showing that the polynomial g,

for which they show a lower bound for bounded bottom support circuits, is robust enough

186

to yield the lower bound even after random restriction. The calculations become trickier

because the calculations of Γ
[PSD]
k,` (ρ(f)). However, in this survey we shall use an easier

approach to generically lift any g to a different polynomial f such that ρ(f) has g as a

projection. This trick came up during discussions with Mrinal Kumar.

Lemma 20.5. Let ρ be a random restriction that sets each variable to zero independently

with probability 1− p. For any polynomial f(y1, . . . yn), define f ◦ Linp as

f ◦ Linp = f

(
t∑
i=1

y1i, . . . ,

t∑
i=1

ynt

)
where t =

(
1

p

)
n log n

Then, ρ(f ◦ Linp) has f as a projection with probability 1− 1/2n.

Proof. For any i = 1, . . . , n

Pr[ρ(yi1) = . . . ρ(yit) = 0] = (1− p)t

=
1

n · 2n

=⇒ Pr[∃i : ρ(yi1) = . . . ρ(yit) = 0] ≤ 1

2n

Hence, with probability at least 1 − 1/2n, for each i there is some j such that ρ(yij) 6= 0.

Therefore, with probability at least 1 − 1/2n, the polynomial f is a projection of ρ(f ◦
Linp).

In all the applications, as in Lemma 20.4, we would have p = 1/nO(1). Thus, we would

only incur a polynomial blow-up in the number of variables from f to f ◦ Linp. Hence, we

can focus on proving a lower bound a homogeneous depth 4 circuit of bottom support at

most r (which would eventually be something like
√
d/100).

Lemma 20.6 ([KLSS17]). Let P be an n-variate degree d polynomial computed by a homo-

geneous depth 4 circuit of size s and bottom-support at most r. Then for any k, ` such that

`+ rk ≤ n/2,

ΓPSD
k,` (P) ≤ s ·

(
2d
r

+ k

k

)
·
(

n

`+ rk

)
.

The proof of this lemma is exactly along the description in of Intuition - (2): split the cir-

cuit into multiquadratic and non-multiquadratic part, and show that the non-multiquadratic

part contributes no multilinear monomials. But to just put things in perspective, we shall

187

be dealing with parameters r =
√
d/100, k =

√
d and ` = n

2
(1 − ε) for ε = O

(
log d√
d

)
. The

above bound, by Lemma 4.7, can be seen to reduce to

ΓPSD
k,` (P) ≤ s ·

(
n

`

)
· (1 + ε)2rk · 2O(

√
d)

Sanity checks

Let us first check if this measure can at least in principle yield a lower bound for us. The

best way to do this is to get some heuristic estimate of what we expect the measure to be

for a random n-variate degree d polynomial R.

Heuristic Estimate. For a random n-variate degree d polynomial R, we expect the

ΓPSD
k,` (R) to be as large as it can be, i.e.

ΓPSD
k,` (R) ≈ min

((
n

k

)
·
(
n

`

)
,

(
n

`+ d− k

))
As a first step, one should first check that if we could indeed find a polynomial P for which

the bound is as large as stated above, do we get a useful lower bound from Lemma 20.6?

Turns out that if we were to choose our parameters carefully, we do indeed get the lower

bound. Just to give a sense of how careful we need to be, here is some of the parameters

that are chosen in [KLSS17, KS14c].

• The number of variables n is at least the cube of the degree d.

• The model we shall be working with is bottom-support r where r =
√
d/1000.

• The order of derivatives k =
√
d.

• The degree of the shift ` shall be chosen as ` = n
2

(1− ε) where ε = log d

c
√
d

for a suitable

constant c.

The above choice of parameters might already seem pretty fragile but these are not the

most delicate choices! While proving the lower bound on ΓPSD
k,` for an explicit polynomial,

the number of monomials etc. need to be tailored to perfection to make the proof work.

188

20.2 The surrogate rank approach of [KLSS17]

The goal is now to find an explicit polynomial P such that PSDk,`(P) has large rank. One

way to prove that a set of polynomials are linearly independent is to show that they have

distinct leading monomials (as used [GKKS14] etc.) Another method is to show that these

polynomials are almost orthogonal. An example of this phenomenon can be seen in the

following fact.

Fact 20.7. Let M be a square matrix such that the absolute value of the diagonal entry is

larger than sum of the absolute values of the non-diagonal entries in that row or column, i.e.

|Mii| ≥
∑

j 6=i |Mij| for all i. Then the matrix M is full rank.

Such matrices are also called diagonally dominant matrices, and captures the notion of

almost orthogonal vectors alluded to earlier. For symmetric matrices M , the following bound

of Alon [Alo09].

Lemma 20.8 ([Alo09]). For any real symmetric matrix M ,

rank(M) ≥ (Tr(M))2

Tr(M2)

We’ll see the proof of this shortly but it would shed some more intuition to see what the

above lemma yields for a diagonally dominant matrix. Let M be a matrix of the form

M =


D d . . . d

d D . . . d
...

...
. . .

...

d d . . . D


r×r

Then, Tr(M) = D · r, and Tr(M2) = (D2 + (r − 1)d2)r = O(D2r + r2d2). If D > (r − 1)d2,

then Tr(M2) = O(D2r). Thus, the above lemma gives that rank(M) = Ω(r).

Proof. By the spectral theorem, any real symmetric matrix has a basis of eigen vectors with

eigenvalues λ1, . . . , λn where n is the dimension of the matrix. If λ1, . . . , λr are the non-zero

eigenvalues, then

Tr(M) =
r∑
i=1

λi

189

≤
√
r ·

(
r∑
i=1

λ2
i

)
=
√
r · Tr(M2)

=⇒ r ≥ (Tr(M))2

Tr(M2)

The bound of [KLSS17] for an explicit polynomial P proceeds by considering the matrix

B where each row is indexed by a pair of multilinear monomials (m1,m2) of degree k and

` respectively, and the row is just the coefficients of the monomials of mult(m2∂m1(P)) in a

fixed order. Note that B is not even a square matrix, and certainly not symmetric. However,

the matrix M = BBT is a symmetric square matrix such that rank(M) ≤ rank(B).

Let us spend some time understand the entries of M . The (i, j)-th entry of M is precisely

the inner-product of row i and row j of B. If P is a polynomial with just zero-one coefficients,

then the i-th diagonal entry is precisely the number of non-zero entries in row i of B. Thus,

Tr(M) = number of non-zero entries in B

= (# cols of B) · E
i
[# non-zero entries in i-th col of B]

The calculation for Tr(M2) requires a little more care. Let Mi refer to the i-th row of M

and Bi refer to the i-th row of B. Then,

Tr(M2) =
∑
i

〈Mi,Mi〉

=
∑
i

∑
j

〈Bi, Bj〉2 =
∑
i

∑
j

(∑
m

BimBjm

)2

=
∑
i

∑
j

∑
m

B2
imB

2
jm +

∑
i

∑
j

∑
m 6=m′

BimBim′BjmBjm′

=
∑
m

(∑
i

∑
j

BimBjm

)
+

∑
i

∑
j

∑
m 6=m′

BimBim′BjmBjm′

= T1 + T2

The first term T1 is easy to calculate:

T1 = (# cols of B) · E
i
[(# non-zero entries in i-th col of B)2]

190

(hopefully)
≈ (# cols of B) · E

i
[(# non-zero entries in i-th col of B)]2

The term T2 roughly corresponds to the number of 2× 2 submatrices of B that is

[
1 1

1 1

]
.

If we could somehow show that there are not too many such submatrices, then Tr(M2) is

essentially dominated by T1. That would then yield that rank(M) ' (# cols of B).

Obtaining a bound on T2:

T2 =
∑
i

∑
j

∑
m6=m′

BimBim′BjmBjm′

Each term BimBim′BjmBjm′ that is non-zero corresponds to a 2×2 submatrix of B (indexed

by rows i, j and columns m,m′) that is

[
1 1

1 1

]
.

The columns of B are indexed by multilinear monomials of degree `+d−k, and the rows

of B are indexed by a derivative and a shift. Let row i correspond to mult(γ1 · ∂α1(P)) and

row j to mult(γ1 · ∂α1(P)). Thus, if the 2× 2 minor indexed by rows i, j and columns m,m′

equals

[
1 1

1 1

]
, then there exists β1, β2, β3, β4 ∈ P such that

m =
β1

α1

· γ1 =
β3

α2

· γ2

m′ =
β2

α1

· γ1 =
β4

α2

· γ2

=⇒ β1

β3

=
β2

β4

Following notation used in [KLSS17], we shall call β1, β2, β3, β4 as the label of the 2 × 2

minor. Since m 6= m′, we also have that β1 6= β2. What we’d like to say that the only way

β1/β3 = β2/β4 is if β3 = β1 and β2 = β4. This need not be true in general of course, but this

is where the choice of the polynomial comes in.

Claim 20.9. If P is the NWd,d3,e polynomial for e = d
3

then any 2 × 2 minor of B (with

the order of derivatives k = o(d)) that is

[
1 1

1 1

]
has label β1, β2, β3, β4 where β1 = β3 and

β2 = β4, or β1 = β2 and β3 = β4.

191

Proof. Assume that β1 6= β3. Then by Lemma 2.5 we know that they differ in at least 2d/3

places. But then, β1/β3 = β2/β4 forces that β1 and β3 must agree at least 2d/3 places forcing

β1 = β2.

Thus, for the NW-polynomial the number of such boxes is quite small. Using this, albeit

with a reasonable amount of sweat, one can estimate T2 to show that T2 = O(T1). Thus,

[KLSS17] obtain the following bound.

Lemma 20.10 ([KLSS17]). For the polynomial NWd,d3,e, for e = d
3
, and k =

√
d and

` = n
2

(
1− log d√

d

)
we have the bound

ΓPSD
k,` (NWd,d3,e) ≥ 1

poly(n, d)
·min

((
n

`+ d− k

)
,

(
d

k

)2

· dk · k! ·
(
n

`

))

Note that the first term of the min in the RHS is the number of columns of B, as we had

heuristically estimated. Simplifying the RHS using Lemma 4.7, we get

ΓPSD
k,` (NWd,d3,e) ≥ 1

poly(n, d)
·
(
n

`

)
· exp (c · ε(d− k))

for some constant c > 0. Since ε = log d√
d

, we get

ΓPSD
k,` (NWd,d3,e) ≥ 1

poly(n, d)
·
(
n

`

)
· exp

(
c ·
√
d · log d

)
With the above bound and Lemma 20.6, we get the lower bound of [KLSS17].

Theorem 20.11 ([KLSS17]). Any depth 4 homogeneous circuit of bottom support r =√
d/1000 computing the polynomial NWd,d3,d/3 over a characteristic zero field must have

top fan-in s = dΩ(
√
d).

In fact, more generally, any homogeneous depth 4 circuit of bottom support bounded by r

computing NWd,m,e for suitably chosen parameters must have top fanin s = dΩ(d/r).

Coupling with Lemma 20.5, we obtain (a slight reformulation of) their main theorem.

Theorem 20.12 ([KLSS17]). Any depth 4 homogeneous computing the polynomial NWd,d3,d/3 ◦Lin

over a characteristic zero field must have size s = dΩ(
√
d).

192

20.3 The leading monomial approach of [KS14c]

Shortly after [KLSS17], a purely combinatorial proof of the result was presented by Kumar

and Saraf [KS14c]. More over, they were able to prove the lower bound of nΩ(
√
d) for the size

of any homogeneous depth 4 circuit computing IMMn,d (for some suitable choices of n and

d). This was a strengthening of [KLSS17] in two ways – (1) it worked over any field, and

(2) the lower bound was for a polynomial that we know can be computed small arithmetic

circuit.

The calculations of [KS14c] are much more trickier than [KLSS17] but there are quite a

few interesting ideas that would even have application in other areas.

The earlier lower bounds of [GKKS14, KSS14, FLMS15] required a lower bound on the

dimension of shifted partial derivatives of a polynomial P , and this was obtained by finding

a large set of distinct leading monomials. In [KS14c], they take this approach but require a

very careful analysis. The key difference in this setting is the following:

If β is the leading monomial of a polynomial P , then for any monomial γ, we

also have that β · γ is the leading monomial of γP .

However, the leading monomial of mult(γP) could be β′ · γ for some β′ 6= β (as

higher monomials could be made non-multilinear during the shift by γ).

The multilinear projection makes the task of counting leading monomials much harder

and [KS14c] come up with a clever method to estimate this.

Leading monomials after multilinear projections

Let P the polynomial for which we are trying to lower bound ΓPSD
k,` (P). For every monomial

multilinear monomial α of degree k, and a monomial β ∈ ∂α(P), define the set A(α, β) as

A(α, β) =

{
γ :

deg(γ) = `+ d− k and there is a γ′ of degree `

such that γ = LM(mult(γ′ · ∂α(P))) = γ′ · β

}

In other words, we want the number of distinct monomials that are contributed by β, which

are also distinct leading monomials obtained from ∂α(P) that are divisible by β. We then

193

have

ΓPSD
k,` (P) ≥

∣∣∣∣∣⋃
α,β

A(α, β)

∣∣∣∣∣
Choice of derivatives: Instead of looking at all derivatives in ∂=k, we shall restrict our-

selves to just a subset of derivatives. Restricting the above union to a subset ∆ ⊂ x=k still

continues to remain a lower bound for ΓPSD
k,` (P). Keeping in mind that we are dealing with

P = NWd,m,e we shall choose ∆ to be a set of monomials of the form x1a1 · · ·xkak with each

ai ≤ m so as to have mk derivatives in total. This shall become relevant later.

ΓPSD
k,` (P) ≥

∣∣∣∣∣∣∣∣
⋃
α∈∆
β∈x=`

A(α, β)

∣∣∣∣∣∣∣∣ (20.13)

The standard technique to obtain a lower bound on the union of sets is via the Inclusion-

Exclusion principle.

Lemma 20.14 (Inclusion-Exclusion Principle). For any collection of sets A1, . . . , Ar,∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ ≥
∑
i

|Ai| −
∑
i 6=j

|Ai ∩ Aj|

If we were to somehow show that
∑

i 6=j |Ai ∩ Aj| ≤
1
2

∑
i |Ai|, then we obtain that |∪iAi| ≥

1
2
·
∑

i |Ai|. This is what shall be employed for the sets A(α, β), except that we quickly run

into two immediate problems.

1. How do we even estimate A(α, β)? The set of γ′ such that γ′β = LM(∂α(P)) do not

seem to have any nice combinatorial structure.

2. What if it so happens that
∑
|A(α1, β1) ∩ A(α2, β2)| = 100

∑
|A(α, β)|? Inclusion-

Exclusion does not yield anything in that case.

It so turns out that the second point actually is the case. In fact for IMMn,d, the second

term turns out to be greater than the first term by a factor of n
√
d/1000 or so! In [KS14c],

they prove a wonderful strengthened version of the Inclusion-Exclusion principle which allows

them to handle the second hurdle.

194

Lemma 20.15 (Stronger Inclusion-Exclusion [KS14c]). Let A1, . . . , Ar be sets such that there

is some λ > 1 such that∑
i 6=j

|Ai ∩ Aj| ≤
∑
i

λ · |Ai|

Then,∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ ≥
(

1

4λ

)
·

(∑
i

|Ai|

)

In other words, as long as the second term of the Inclusion-Exclusion principle is not too

much larger than the first term, we still can get non-trivial bounds on the union.

Proof. Let p = 1
2λ
< 1. Define sets A′1, . . . , A

′
r such that A′i ⊆ Ai obtained by adding each

element of Ai to A′i independently with probability p. Since A′i ⊆ Ai, we also have that

|∪Ai| ≥ |∪A′i|. By linearity of expectation,

E

[∑
i

|A′i|

]
= p

∑
i

|Ai|

More importantly, by the sampling process,

E
[∣∣A′i ∩ A′j∣∣] = p2 · |Ai ∩ Aj|

as any common element must be added to both A′i and A′j, and either of these events happen

independently with probability p each. Since
∑

i,j

∣∣A′i ∩ A′j∣∣ drops by a factor of p2, we are

now in a position to apply the Lemma 20.14 to the A′is.∣∣∣⋃Ai

∣∣∣ ≥ E
[∣∣∣⋃A′i

∣∣∣]
≥ E

[∑
i

|A′i|

]
− E

[∣∣A′i ∩ A′j∣∣]
= p

(∑
i

|Ai|

)
− p2

(∑
i 6=j

|Ai ∩ Aj|

)

≥ p

(∑
i

|Ai|

)
− p2λ

(∑
i

|Ai|

)

195

≥ p

2

(∑
i

|Ai|

)
=

1

4λ

(∑
i

|Ai|

)

Corollary 20.16. Considers sets A1, . . . , Ar and let S1 =
∑

i |Ai| and S2 =
∑

i 6=j |Ai ∩ Aj|.
Then,∣∣∣⋃Ai

∣∣∣ ≥ S1

4
·min

(
1,
S1

S2

)
We can now proceed to lower bound |

⋃
A(α, β)| via inclusion exclusion.

Estimating |
⋃
A(α, β)| via Inclusion-Exclusion∣∣∣∣∣⋃

α,β

A(α, β)

∣∣∣∣∣ ≥
∑
α,β

|A(α, β)| −
∑

(α,β)6=(α′,β′)

|A(α, β) ∩ A(α′, β′)|

Let us first address the term
∑
|A(α, β)|. As mentioned earlier, it is not an easy task to

get a good handle on the set A(α, β) for polynomial such as NW or IMM, for any reasonable

monomial ordering. However, [KS14c] circumvent this difficult by using an indirect approach

to estimate this term.

For any derivative α and β ∈ ∂α(P), define the set S(α, β) as the following set of multi-

linear monomials of degree ` that is disjoint from β.

S(α, β) =

{
γ :

γ is multilinear, has

degree ` and gcd(β, γ) = 1

}

This on the other hand is independent of any monomial ordering, and is also easy to calculate:

For every α, β |S(α, β)| =

(
n− d+ k

`

)
.

Lemma 20.17 ([KS14c]). For any α,

∑
β

|A(α, β)| ≥

∣∣∣∣∣⋃
β

S(α, β)

∣∣∣∣∣
196

Proof. Consider any γ ∈
⋃
β S(α, β). By definition, there is at least one non-multilinear

monomial in γ ·∂α(P). Thus, in particular LM(mult(γ ·∂α(P)) is non-zero and equal to some

γ · β for some monomial β ∈ ∂α(P). This also implies that γ′ = γ · β ∈ A(α, β). This yields

an injective map φ

φ :
⋃
β

S(α, β) � {(β, γ′) : β ∈ ∂α(P) , γ′ ∈ A(α, β)}

Since the size of the RHS is precisely
∑

β |A(α, β)|, the lemma follows.

Thus, by another use of Inclusion-Exclusion on the S(α, β)’s, we get∣∣∣∣∣⋃
α,β

A(α, β)

∣∣∣∣∣ ≥ ∑
α,β

|A(α, β)| −
∑

(α,β)6=(α′,β′)

|A(α, β) ∩ A(α′, β′)|

≥
∑
α

(∑
β

|S(α, β)|

)
−

∑
α

(∑
β 6=β′
|S(α, β) ∩ S(α, β′)|

)
−

∑
(α,β)6=(α′,β′)

|A(α, β) ∩ A(α′, β′)|

Let us call the three terms in the RHS of the last equation as T1, T2 and T3 respectively.

Since we know the size of each S(α, β) exactly, the value of T1 is easily obtained.

Lemma 20.18 ([KS14c]).

T1(α) :=
∑
β

|S(α, β)| = (# mons in a deriv) ·
(
n− d+ k

`

)

We shall be simplifying such binomial coefficients very often so let us recall the Lemma 4.7.

Lemma 4.7. Let n and ` be parameters such that ` = n
2
(1− ε) for some ε = o(1). For any

a, b such that a, b = O(
√
n),(

n− a
`− b

)
=

(
n

`

)
· 2−a · (1 + ε)a−2b · exp(O(b · ε2)).

Since our of parameters would be ε = Θ
(

log d√
d

)
, the bound on T1 can be simplified as

T1(α) = (# mons in a deriv) ·
(
n

`

)
·
(

1 + ε

2

)d−k
· exp(O(log2 d))

197

= me−k ·
(
n

`

)
·
(

1 + ε

2

)d−k
· exp(O(log2 d))

Remark. To avoid writing this factor of exp(O(log2 d)), we shall use ≈ of & or . to indicate

that a factor exp(O(log2 d)) is omitted. ♦

So far we have not used any property of the polynomial P . But this becomes crucial in

the calculation of T2 and T3. To get a sense of how these calculations proceed in [KS14c], we

present the full calculation for the case of P = NWd,m,e for suitable choices of the parameters

m, d, e.

Lemma 20.19 ([KS14c]). For the polynomial NWd,m,e, if n = md and ` = n
2
(1 − ε) for

ε = Θ
(

log d√
d

)
, for every α ∈ ∆,

T2(α) :=
∑
β 6=β′
|S(α, β) ∩ S(α, β′)| . m2(e−k) ·

(
n

`

)
·
(

1 + ε

2

)2d−2k

Proof. Recall that S(α, β)∩S(α, β′) is just set of all multilinear monomials γ of degree ` that

are disjoint from both β and β′. Hence, for any pair of multilinear degree (d− k) monomials

β 6= β′ ∈ ∂α(P) such that deg(gcd(β, β′)) = t, we know that

|S(α, β) ∩ S(α, β′)| =

(
n− 2d+ 2k + t

`

)
Thus, if we can count the number of pairs (β, β′) that agree on exactly t places, we can

obtain T2(α). Note that for NWd,m,e, any two β, β′ ∈ ∂α(NWd,m,e) can agree on at most

e − k places. Further, the number of pairs that agree in exactly 0 ≤ t ≤ e − k places is at

most

me−k ·
(
d− k
t

)
· (m− 1)e−k−t

as there are me−k choices for β, and
(
d−k
t

)
choices for places where they may agree, and

(m− 1)e−k−t choices for β′ that agree with β on those t places. Thus,

T2(α) ≤
e−k∑
t=0

me−k ·
(
d− k
t

)
· (m− 1)e−k−t ·

(
n− 2d+ 2k + t

`

)

198

≈
e−k∑
t=0

me−k ·
(
d− k
t

)
· (m− 1)e−k−t ·

(
n

`

)
1

22d−2k−t · (1 + ε)2d−2k−t

≤ m2(e−k)

(
n

`

)(
1 + ε

2

)2d−2k

·
e−k∑
t=0

(
d− k
t

)(
2

(1 + ε)m

)t
≤ m2(e−k)

(
n

`

)(
1 + ε

2

)2d−2k

·
(

1 +
2

(1 + ε)m

)d−k
= m2(e−k) ·

(
n

`

)
·
(

1 + ε

2

)2d−2k

·O(1) if m = Ω(d)

Combining this with Lemma 20.18 and using Inclusion-Exclusion (Corollary 20.16),∣∣∣∣∣⋃
β

S(α, β)

∣∣∣∣∣ & T1(α) ·min

(
1,
T1(α)

T2(α)

)

≈ T1(α) ·min

(
1,

(
2

1+ε

)d−k
me−k

)

To maximize this, if we choose the parameters m, d, e such that T1(α) ≈ T2(α), we obtain

the following corollary.

Corollary 20.20. Consider the polynomial NWd,m,e with n = md and m = Ω(d). If ` =
n
2
(1− ε) for ε = Θ

(
log d√
d

)
and e chosen so that

me−k poly
=

(
2

1 + ε

)d−k
then ∑

α∈∆
β∈∂α(NW)

|A(α, β)| & |∆| ·
(
n

`

)

Proof. By Lemma 20.17, we know that

∑
α∈∆

β∈∂α(P)

|A(α, β)| ≥ |∆| ·

∣∣∣∣∣⋃
β

S(α, β)

∣∣∣∣∣ .

199

Furthermore, from the discussion above, if T1(α) ≈ T2(α) then∣∣∣∣∣⋃
β

S(α, β)

∣∣∣∣∣ & T1(α) ·min

(
1,
T1(α)

T2(α)

)
= T1(α)

≈
(
n

`

)

as T1(α) ≈ T2(α) forces me−k ≈
(

2
1+ε

)d−k
. Therefore,

∑
α∈∆

β∈∂α(P)

|A(α, β)| & |∆| ·
(
n

`

)

Note that e needs to tailored very precisely to force the above condition! If e is chosen

too large or small, we get nothing from this whole exercise!

In the case of IMM this calculations gets a lot messier. The calculation would similarly

force that the number of monomials must be in a very narrow range. This is achieved by

instead looking at a random subgraph of the generic ABP of suitable sparsity to ensure the

following two properties:

• The number of monomials in any derivative is exactly as demanded.

• ‘Most’ pairs of monomials (β, β′) agree on ‘few’ places.

Upper bounding
∑
|A(α, β) ∩ A(α′, β′)|

We are still left with the task of upper bounding

T3 =
∑

(α,β) 6=(α′,β′)

|A(α, β) ∩ A(α′, β′)|

As mentioned earlier, we really do not have a good handle on the set A(α, β), and certainly

not on the intersection of two such sets. Once again, we shall use a proxy that is easier to

estimate to upper bound T3.

The set A(α, β) ∩ A(α′, β′) consists of multilinear monomials γ of degree ` + d− k such

that there exists multilinear monomials γ′, γ′′ of degree ` satisfying

γ = γ′β = γ′′β′,

200

γ′β = LM(mult(γ′∂α(P)))

and γ′′β′ = LM(mult(γ′′∂α′(P)))

This in particular implies that γ must be divisible by both β and β′.

Observation 20.21. If deg(gcd(β, β′)) = t, then

|A(α, β) ∩ A(α′, β′)| ≤
(
n− 2d+ 2k + t

`− d+ k + t

)
Proof. Every monomial γ ∈ A(α, β)∩A(α′, β′) must be divisible by β and β′. Since |β ∪ β′| =
2d− 2k − t, the number of choices of γ is precisely(

n− (2d− 2k − t)
(`+ d− k)− (2d− 2k − t)

)
=

(
n− 2d+ 2k + t

`− d+ k + t

)
One needs a similar argument as in the case of T2 to figure out how many pairs (α, β) 6=

(α′, β′) are there with deg(gcd(β, β′)) = t and sum them up accordingly.

Lemma 20.22 ([KS14c]). For the polynomial NWd,m,e, and n = md and ` = n
2
(1 − ε) for

ε = Θ
(

log d√
d

)
,

T3 . |∆|2 ·
(
me−k

2d−k

)2

·
(
n

`

)
Proof. Fix a pair of derivatives α, α′. As before, we shall first count the number of pairs of

monomials β ∈ ∂αP and β′ ∈ ∂α′P such that gcd(β, β′) = t. Note that since α may differ

from α′, we could potentially have gcd(β1, β2) = e. Once again, this is easily seen to be at

most

me−k ·
(
d− k
t

)
· (m− 1)e−k−t.

Therefore, using Observation 20.21,

T3(α, α′) ≤
e∑
t=0

me−k · (m− 1)e−k−t
(
d− k
t

)(
n− 2d+ 2k + t

`− d+ k + t

)
≈

e∑
t=0

me−k · (m− 1)e−k−t
(
d− k
t

)
·
(
n

`

)(
1

2

)2d−2k−t

(1 + ε)t

201

≤ m2(e−k)

22(d−k)
·
(
n

`

)
·
(

1 +
2(1 + ε)

m

)d−k
≈ m2(e−k)

22(d−k)
·
(
n

`

)
(as m = Ω(d))

=⇒ T3 . |∆|2 ·
(
me−k

2d−k

)2

·
(
n

`

)
Recalling that we have chosen our parameters so that

(# mons per deriv) ≈
(

2

1 + ε

)d−k
the above equation reduces to

T3 . |∆|2
(

1

1 + ε

)2(d−k)

·
(
n

`

)
.

We shall choose our set of derivatives so that |∆| ≈ (1 + ε)2(d−k). With that setting, we can

readily see that T3 . T1.

Combining with Corollary 20.20, we obtain the required bound for |
⋃
A(α, β)| via Inclusion-

Exclusion (Corollary 20.16).

Lemma 20.23. Let m = d2 (so that n = md = d3). Let k = O(
√
d) and ` = n

2
(1− ε) for

ε = log d

c
√
d

where c is a constant. If c and e are tailored so that

|∆| = mk & (1 + ε)2d−2k

me−k ≈
(

2

1 + ε

)d−k
Then, for the polynomial NWd,m,e, if we consider a subset of non-zero derivatives order k of

size b(1 + ε)2d−2kc, then

ΓPSD
k,` (NWd,m,e) ≥

∣∣∣∣∣⋃
α,β

A(α, β)

∣∣∣∣∣ &

(
n

`

)
· (1 + ε)2d−2k.

By Lemma 20.6, we know that any homogeneous depth-4 circuit C of size s and bottom

fan-in r satisfies

ΓPSD
k,` (C) ≤ s ·

(
n

`

)
· (1 + ε)rk · 2O(

√
d).

202

Hence, if r was small enough (say r =
√
d/1000) so that rk ≤ (d− k), then we have a lower

bound of s ≥ (1 + ε)d−k · 2O(
√
d) which is dΩ(

√
d) by the choice of ε.

Theorem 20.24 ([KS14c]). Any homogeneous depth 4 circuit with bottom support bounded

by r =
√
d/1000 computing, over any field F, the polynomial NWd,m,e with parameters as

defined above must have top fan-in s = dΩ(
√
d).

In fact, more generally, any homogeneous depth 4 circuit of bottom support bounded by r

computing NWd,m,e for suitably chosen parameters must have top fanin s = dΩ(d/r).

Again, coupling with Lemma 20.5, we obtain (a slight reformulation of) their theorem.

Theorem 20.25 ([KLSS17, KS14c]). Any homogeneous depth 4 circuit computing, over any

field F, the polynomial NWd,m,e ◦Lin with parameters as defined above must have top fan-in

s = dΩ(
√
d).

A similar lower bound dΩ(
√
d) holds also for the polynomial IMMn,d ◦ Lin for suitable

choices of n and d.

Exercise 20.1 Show that there indeed does exist settings of c and e so as to satisfy the

constraints in Lemma 20.23.

203

Part VII

Further applications of shifted partial

derivatives

204

Chapter 21

Quick summary of key points

The chapters that follow would delve deeper to show more general models where variants of

shifted or projected shifted partial derivatives can be used to prove lower bounds. A lot of

the lower bounds would use specific observation or tricks used in the proofs in Chapter 19

and Chapter 20.

Note to reader: All these lower bounds would involve a delicate play be-

tween the various parameters involved. In order to completely understand,

it is imperative that you work out the calculations in Chapter 19 and Chap-

ter 20 (specifically those in Section 20.3) at least once completely. Doing

that would give some sense of how the different parameters interact and this

is crucial to a lot of the lower bounds that follow.

Having said that, this chapter shall be devoted to restating the most important points to

remember from the previous two chapters. These would be enough to get a high-level view of

the lower bounds that follow but one has to get their hands dirty somewhere to completely

understand these.

21.1 Shifted Partial Derivatives

Definition (Shifted Partial Derivatives, Definition 19.4). Let ∂=k(f) refer to the set of all

k-th order partial derivatives of f , and x≤` refer to the set of all monomials of degree at

most `. The shifted partials of f , denoted by
〈
∂=k (f)

〉
≤`, is the vector space spanned by{

x≤` · ∂=k(f)
}

. The dimension of this space shall be denoted by Γ
[SPD]
k,` (f). ♦

205

To express this pictorially, Γ
[SPD]
k,` (f) is the rank of the following matrix.

x=` · ∂=k

Monomials of degree `+ d− k

m

xα · ∂xβ

coefficient of m in xα∂xβ(f)

This measure is used to prove lower bounds for the top fan-in of depth four circuits with

bounded bottom fan-in.

Lemma (Upper bound for hom. ΣΠΣΠ[t] circuits, restating Corollary 19.7). Let f be an

n-variate degree d polynomial of the form f = Q1 · · ·Qa with deg(Qi) ≤ t. Then for any

k, `, we have

Γ
[SPD]
k,` (f) ≤

(
a

k

)
·
(
n+ `+ k(t− 1)

n

)
By grouping factors of degree much smaller than t, one can assume without loss of gen-

erality that a = O(d/t). One should note that the first binomial coefficient
(
a
k

)
is at most

2a. Thus if the goal is to prove a lower bound of nΩ(d/t) = nΩ(a), then the first term is not

too relevant.

Exercise 21.1 Let H(Q1, . . . , Qa) be an arbitrary polynomial function applied to Q1, . . . , Qa.

Suppose deg(Qi) ≤ t for all i. Show that

Γ
[SPD]
k,` (H(Q1, . . . , Qa)) ≤

(
a+ k

a

)
·
(
n+ `+ k(t− 1)

n

)
.

The above lemma is a special case of the above more general exercise.

The second part of the lower bound is to show that the measure is large for explicit

polynomials. The Nisan-Wigderson polynomial, NWd,m,e, is designed so that the measure

is almost as large as possible. The iterated matrix multiplication polynomial, IMM, also

has a large value of Γ
[SPD]
k,` , though not as large as the value for NW. For the right range of

206

parameters,

Γ
[SPD]
k,` (Q1 · · ·Qa)� Γ

[SPD]
k,` (IMM)� Γ

[SPD]
k,` (NW) ≈ Maximum possible.

21.2 Projected Shifted Partial Derivatives

An important variant that shall be heavily used in the following chapters is the measure of

projected shifted partial derivatives defined in Chapter 20.

Definition (Projected shifted partial derivatives, Definition 20.3). Fix parameters k, ` > 0.

For any polynomial P , the set of projected shifted partials of f , denoted by PSDk,`(f) is

defined as follows

PSDk,`(f) =

{
mult(m1 · ∂m2(f)) :

deg(m1) = ` , deg(m2) = k,

m1 and m2 are multilinear

}

where mult(f) refers to the polynomial f projected to only the multilinear monomials of f .

The measure ΓPSD
k,` (f) is defined as the dimension of the above set of polynomials, i.e.

♦ ΓPSD
k,` (f) = dim (span(PSDk,`))

Pictorially, the measure is the rank of the following matrix.

x=` · ∂=k

Multilinear monomials of degree `+ d− k

m

xα · ∂xβ

coefficient of m in xα∂xβ(f)

One can think of this as a sub-matrix for the shifted partial derivatives obtained by

throwing out the columns corresponding to non-multilinear monomials.

This measure was used to prove lower bounds on the total size of homogeneous depth

four circuits (with no bottom fan-in restrictions), unlike the previous setting which was a

top fan-in lower bound. But the following is an important note to bear in mind:

Projected shifted partial derivatives is designed to prove lower bounds on the top

207

fan-in of homogeneous depth four circuits with low bottom support size.

It so happens that any homogeneous depth four circuit of small total size can be reduced

to a depth four circuit of small bottom support size. But this distinction is important and

should be stressed.

21.2.1 Depth four circuits of low bottom support size

Let f = Q1 · · ·Qa with d = deg(f) and suppose all the monomials of any Qi depend on just

r variables. There are two important observations made to prove the upper bound of the

complexity measure on such circuits.

Observation (Non-multiquadratic terms do not contribute). Let g be a polynomial such

that every monomial of g is divisible by some x3
i , or in other words each monomial of g is

non-multiquadratic. Then for an k, `, we have Γ
[PSD]
k,` (g) = 0.

Observation (Decomposition of low support size products). Let f = Q1 · · ·Qa be a polyno-

mial of degree d such that all monomials of any Qi depends on at most t variables. Then f

can be expressed as

f = Q′1 · · ·Q′a + g

where deg(Q′i) ≤ 2r for all i, and every monomial of g is non-multiquadratic.

Therefore, we have

Γ
[PSD]
k,` (Q1 · · ·Qa) = Γ

[PSD]
k,` (Q′1 · · ·Q′a)

and the RHS is a low bottom degree product. Thus similar to the upper bound for shifted

partial derivatives, bearing in mind that we only care about multilinear monomials, one can

easily show the following.

Lemma (Upper bound for low bottom support size circuits, Lemma 20.6). Let f = Q1 · · ·Qa

be an n-variate degree d polynomial with each Qi a sum of monomials depending on at most

r variables. Then for any k, ` with `+ kr ≤ n
2
,

Γ
[PSD]
k,` (f) ≤

(
(2d/r) + k

k

)
·
(

n

`+ kr

)

208

For a very delicate range of parameters, we have a very similar behaviour of the measure

on the standard polynomials.

Γ
[PSD]
k,` (Q1 · · ·Qa)� Γ

[PSD]
k,` (IMM)� Γ

[PSD]
k,` (NW) ≈ Maximum possible.

In the right range of parameters, this gives an nΩ(d/t) lower bound on the top fan-in of

any homogeneous depth four circuit of bottom support size bounded by t that computes NW

or IMM.

The calculations involved are quite delicate but it would be useful to just keep the case

of NW in mind as the full calculations were described in Section 20.3. But a couple of thing

to keep in mind is that the calculations for NWd,m,e work over any field but as long as me

roughly equal to 2d (the precise constraints are explicit described in Section 20.3).

So far, this only addresses depth four circuits of small bottom support size. In order

to reduce the general setting of homogeneous depth four circuits to this case, there is one

additional trick employed.

21.2.2 Reducing to depth four circuits of low bottom support size

The key observation here is that if we have a depth four circuit of small size, then the number

of distinct monomials computed at the layer closest to the leaves is bounded by the size of

the circuit. As a concrete instance, say we have a depth four circuit of size s = n(0.1)
√
d. We

shall now pick a lot of variables at random and set them to zero or to be more precise we shall

set each variable to 0 independently with probability 1− 1
n0.2 . With very high probability, we

would now be left with about n0.8 variables but the resulting circuit remains homogeneous

as setting variables to zero maintains homogeneity.

However, if m is a monomial that depends on
√
d or more variables, the probability that

this monomials survives this random restriction is at most 1

n(0.2)
√
d
. Thus, even if we union

bound over all monomials present in the depth four circuit of size n(0.1)
√
d we get that the

probability that some monomial of support
√
d or more survives this process is at most

1

n(0.1)
√
d

= o(1). Thus, almost surely, the resulting circuit is now a homogeneous depth four

circuit with bottom support size at most
√
d.

This however complicates the other side of the argument where we now need to find a

209

polynomial P such that even after a random restriction ρ is applied on P , we must have

Γ
[PSD]
k,` (ρ(P)) to be large. This is extremely non-trivial to see if NW or IMM are so robust.

Fortunately, there is a hack that allows us to circumvent this at the cost of making the

polynomial uglier.

Lemma (Linear blow-up trick to handle random restrictions, Lemma 20.5). Let ρ be a

random restriction that sets each variable to zero independently with probability 1 − α. For

any polynomial P (x1, . . . xn), define P ◦ Linα as

P ◦ Linα = P

(
t∑
i=1

y1i, . . . ,

t∑
i=1

ynt

)
where t =

(
1

α

)
n log n

Then, ρ(f ◦ Linα) has f as a projection with probability 1− 1/2n.

Basically, we replace each variable in NW by a sum of t new distinct variables where

t = (1/α) log n. The point is that, if a variable is kept alive with probability α, then with

very high probability, one of the t variables {yij}j∈[t] will be kept alive for each xi. Hence,

there is a copy of NWd,m,e sitting inside ρ(NWd,m,e ◦Linα) with very high probability.

Therefore, if we assume on the contrary that C is a homogeneous depth four circuit of

size n(0.1)
√
d computing NWd,m,e ◦Linα, then there is a homogeneous circuit C ′ with size at

most n(0.1)
√
d and bottom support size at most

√
d that computes NWd,m,e. But since we

already have a lower bound for homogeneous depth four circuits of low bottom support size

computing NWd,m,e, we get a contradiction.

Hopefully this would give the readers a rough description of the main observations. But

to really understand them, one has to work out the calculations in Section 20.3 at least once

to get a better grip of how these parameters interact. We now move on to some other models

for which projected shifted partials, or variants of it, can again be employed.

210

Chapter 22

Evaluation perspective on projected

shifted partial derivatives

The measure used in the lower bounds of Kayal, Limaye, Saha, Srinivasan [KLSS17] and

Kumar, Saraf [KS14c] was the dimension of projected shifted partials. As seen in that

chapter, the calculations are extremely delicate. In this chapter, we shall see some slight

modifications of this measure that is in a sense more algebraic and hence useful in other

lower bounds.

22.1 Coefficients vs evaluations

For a moment, let us revisit the lower bounds of Nisan and Wigderson [NW97]. The measure

studied for the class of homogeneous depth-3 circuits in Theorem 8.3 was the dimension of

partial derivatives.

Γ
[NW]
k (f) := dim

{
∂=k(f)

}
More precisely, we interpret any element of ∂=k(f) as a long vector of coefficients and look

at the dimension of this collection of vectors. That is, Γ
[NW]
k (f) is the rank of the following

matrix.

211

∂=k

Monomials of degree d− k

m

∂xα

coefficient of m in ∂xα(f)

Grigoriev and Karpinski [GK98], for their lower bound for ΣΠΣ circuits over finite fields

instead looked at the dual evaluation perspective by studying a matrix of the form

∂=k

Elements of F n
q

a

∂xα

Evaluation of ∂xα(f) at a

As seen in Chapter 10, the measure Γ
[GK]
k was the rank of the above matrix (with a few

columns removed). Intuitively, we expect that if the rank of the coefficient matrix is large,

then the rank of the evaluation matrix should also be large. Sometimes, the evaluation

perspective allows us to handle the circuit model better. In a way, the proof of Grigoriev

and Karpinski [GK98] can be thought of as a formalization of this intuition for ΣΠΣ circuits.

A similar perspective can also be adopted for the dimension of shifted partial derivatives.

For the dimension of projected shifted partials however, this connection is not that clean.

Roughly speaking, throwing away non-multilinear monomials changes the evaluations of the

shifted partials at points. Formally, the multilinear projection of a polynomial f can be

interpreted as looking at the residue of f mod {x2
i : i ∈ [n]}, that is just replacing any

x2
i by zero. However this reduction does not work well with evaluations as f(a) could be

different from (f mod {x2
i : i ∈ [n]})(a) for each a ∈ Fn.

Let us turn the question around and ask if we wish to understand the rank of the following

matrix

212

x=`∂=k

Elements of {0, 1}n

a

xα∂xβ

Evaluation of xα∂xβ(f) at a

what is the coefficient analogue of this measure? Turns out, the answer is a different notion

of projected shifted partial derivatives where the projection is not modulo {x2
i : i ∈ [n]}

but instead modulo {x2
i − xi : i ∈ [n]}. It should be intuitively clear that as long as we

are only interested in evaluations on {0, 1}n, the evaluation of f mod {x2
i − xi : i ∈ [n]} at

a ∈ {0, 1}n yields the same as f(a).

What can we say about this modification of projected shifted partial derivatives? Is this

also a measure that can give the homogeneous depth-4 lower bounds studied in Chapter 20?

Turns out the answer is indeed yes, and this perspective also allows one to generalize the lower

bounds to homogeneous depth-5 circuits over finite fields by Kumar and Saptharishi [KS17].

There would be like the evaluation perspective of Grigoriev and Karpinski [GK98] (that we

saw in Chapter 10) of the lower bound of Nisan and Wigderson [NW97] (that we saw in

Subsection 8.1.3).

22.2 Projected shifted partials via
{
x2
i − xi : i ∈ [n]

}
The following definition is a little more general but would be useful later in this chapter.

But for now, it would be useful to just consider I = 〈x2
i − xi : i ∈ [n]〉.

Definition 22.1 (PSDs with respect to I). The projected shifted partial derivatives with

respect to I for a polynomial f , denoted by Γk,`,I(f), is defined as

♦ ΓPSD
k,`,I(f) := dim

{(
x=` · ∂=k(f)

)
mod I

}
.

In the setting where I = 〈x2
i − xi : i ∈ [n]〉, every polynomial f , there is a unique multilinear

polynomial g for which f = g mod I and we shall refer to this g by f mod I. Thus, Γk,`,I(f)

is the rank of the following matrix:

213

x=`∂=k

Mult. mons of deg. ≤ `+ d− k

m

xα∂xβ

Coefficient of m in xα∂xβ(f) mod I

In Definition 20.3, we are essentially working with I = 〈x2
i : i ∈ [n]〉 but working modulo

other ideals is at times more useful. In fact, there is a fairly large class of ideals I for which

f mod I has a unique multilinear representative. But to make it applicable for lower bounds

for homogeneous depth-4 circuits, we will need a mechanism to transform a “low support

polynomial” to a “low degree polynomial”.

Definition 22.2 (Support-to-degree ideals). An ideal I is said to be a support-to-degree

ideal if there exist linear polynomials `1, . . . , `n such that

♦ I =
〈
x2
i − `i(xi) : i ∈ [n]

〉
.

Observation 22.3. For any polynomial f and a support-to-degree ideal I, there is a unique

multilinear polynomial g such that f = g mod I.

Furthermore, if f is a polynomial such that every monomial in f depends on at most r

variables, then the unique multilinear polynomial g = f mod I in fact has degree at most r.

It is important to note that the support-to-degree ideal has generators that replace x2
i

by a linear polynomial in just xi. Relaxing this to x2
i − ` for an arbitrary linear polynomial

` could lead to monomials of large support.

Proof. The proof follows immediately by repeatedly replacing x2
i by `i(xi).

As mentioned before, we would need the above more general definition in a later lower

bound but for now it would help to just keep ideals such as 〈x2
i : i ∈ [n]〉 or 〈x2

i − xi : i ∈ [n]〉
in mind.

In order to check if Definition 22.1 is a measure useful for homogeneous depth-4 circuits,

we need to show two things — (1) the measure is small for a small homogeneous depth-4

circuit (of low bottom support), and (2) the measure is large for an explicit polynomial.

These together would imply the practicability of dimension of projected shifted partials with

respect to an arbitrary support-to-degree ideal.

214

The second claim would be easier to prove so let us address that first.

Lemma 22.4 (PSD wrt I for homogeneous polynomials). Let f be any homogeneous poly-

nomial of degree d. For any choice of k, ` and any support-to-degree ideal I, we have

ΓPSD
k,`,I(f) ≥ ΓPSD

k,` (f).

Proof. Let g ∈ x=`·∂=k(f). The main difference between g mod 〈x2
i : i ∈ [n]〉 and g mod I is

just that the first projection just zeros out any non-multilinear monomial of degree `+ d− k
whereas g mod I reduces non-multilinear monomials to lower degree monomials. Hence,

g mod 〈x2
i : i ∈ [n]〉 is just g mod I but just restricted to the multilinear monomials of

degree `+ d− k. Thus it follows that the rank of
(
x=`∂=kg

)
mod I is lower bounded by the

rank of
(
x=`∂=kg

)
mod 〈x2

i : i ∈ [n]〉.

We now want to show that if C is a homogeneous depth-4 circuit with bottom support

at most r = O(
√
d), then we can give a good upper bound for ΓPSD

k,`,I(C).

Lemma 22.5 (PSD wrt I for a hom. ΣΠΣΠ circuit). Let C be a homogeneous ΣΠΣΠ

computing an n-variate degree d polynomial of top fan-in s and bottom support bounded by

r. Then for any choice of k, ` and any support-to-degree ideal I we have

ΓPSD
k,`,I ≤ s ·

(
3(d/r) + 1

k

)
·
(

n

`+ kr

)
Proof. Let us consider a single summand T = Q1 · · ·Qm of C. We shall partition this set

into those polynomials Q1, . . . , Qa of degree at most r, and polynomials Q′1, . . . , Q
′
b of degree

more than r. By homogeneity of C, we know that b ≤ d/r. Since some of the Qis could

have very small degree, a could potentially be as large as d. To handle this, if we find any

Qi and Qj both of degree at most r/2, we shall replace them by their product. This ensures

that all Qis have degree more than r/2 except perhaps one. Hence, (reusing some symbols)

we can write T as

T = Q̃1 · · · Q̃a · Q′1 · · ·Q′b

where each a ≤ 2(d/r) + 1, b ≤ (d/r), each Qi has degree at most r and every monomial in

a Q′i depends on at most r variables. For brevity, we shall use the notation Q̃A to denote∏
i∈A Q̃i, and similarly Q′B to denote

∏
i∈B Q

′
i.

215

Let ∂xα(T) be a k-th order partial derivative of T . By the chain rule of differentiation,

∂xα(T) ∈ span

{
∂xβ(Q̃A) · ∂xγ (Q′B) · Q̃A ·Q′B :

xα = xβ · xγ

|A|+ |B| ≤ k

}

⊆ span

{
x≤k(r−1) · ∂xγ (Q′B) · Q̃A ·Q′B :

xα = xβ · xγ

|A|+ |B| ≤ k

}

=⇒ x=` · ∂xα(T) ⊆ span

{
x≤`+k(r−1) · ∂xγ (Q′B) · Q̃A ·Q′B :

xα = xβ · xγ

|A|+ |B| ≤ k

}

We now have to look at x=` · ∂xα(T) mod I and for that notice that Q′B is a product of

polynomials of low-support, that is each monomial Q′i depends on at most
√
d variables.

Therefore, by applying the product rule on ∂xγ (Q
′
B), we know that this can be written as

a linear combination of products of low-support polynomials. By Observation 22.3, every

polynomial f of support at most r there is a unique multilinear polynomial g = f mod I of

degree at most r. Hence, we get that

x=` · ∂xα(T) mod I ⊆ span

{
x≤`+k(r−1) · x≤k(r) · Q̃A ·Q′B :

xα = xβ · xγ

|A|+ |B| ≤ k

}
mod I

= span

{
x≤`+kr · Q̃A ·Q′B :

xα = xβ · xγ

|A|+ |B| ≤ k

}
mod I.

Therefore, an upper bound on
{
x=`∂=k(T) mod I

}
is(

2(d/r) + 1 + (d/r)

k

)
·
(

n

`+ kr

)
· n

Hence, if C = T1 + · · ·+ Ts, then by sub-additivity we get

ΓPSD
k,`,I(C) = s ·

(
3(d/r) + 1

k

)
·
(

n

`+ kr

)
· n.

The bound above is almost the same as in Lemma 20.6 and the difference is only exp(O(d/r))

due to the first binomial coefficient above. Lemma 22.4 and Lemma 20.23 yields a lower

bound for ΓPSD
k,`,I(NW) as well.

What did we gain by looking at ΓPSD
k,`,I at the end of all this? The key point is makes it

easier to look at the evaluation perspective for such measures when the ideal I cooperates

216

with the evaluation operation. A concrete instance of this was the lower bound by Kumar

and Saptharishi [KS17] for homogeneous depth five circuits over finite fields.

22.3 Lower bounds for depth five circuits over finite

fields

The plan would be to combine the ideas from the lower bound of Grigoriev and Karpinski

[GK98] (discussed in Chapter 10) with the above perspective of projected shifted partial

derivatives. The main theorem of this chapter would be the result of Kumar and Sapthar-

ishi [KS17].

Theorem 22.6 ([KS17]). Consider NWd,m,e for some suitable choice of parameter. For

any finite field Fq, any homogeneous depth-5 circuit computing NWd,m,e must be of size

exp(Ωq(
√
d)).

The plan that one could adopt is the following.

1. Take the measure to be ΓPSD
k,`,I where I = 〈xqi − xi : i ∈ [n]〉, which is the evaluation

perspective of the shifted partial derivatives on Fnq .

2. As an analogue of “support” for the hom. ΣΠΣΠ lower bounds, we shall look at the

“rank” of products of linear polynomials computed by the bottom two layers of the

circuit.

3. Intuitively, any term of rank at most r should essentially behave like a term of degree

at most (q − 1)r, as I reduces any variable of exponent q or above.

Hence, the “low-rank” part of the circuit (only considering terms of rank at most
√
d)

should behave like a homogeneous ΣΠΣΠ[q
√
d] circuit, for which we can upper bound

the measure in a similar fashion.

4. To eliminate the “high-rank” products of linear polynomials, just as in the lower bound

of Grigoriev and Karpinski [GK98] (as discussed in Chapter 10), these “high-rank”

gates are zero on almost all evaluations. Therefore, we can modify our measure to not

look at all evaluations on Fnq but instead at Fnq \ E where E a tiny subset of Fnq (of

about exp(−
√
d) · qn size).

5. For the hard polynomial NWd,m,e, hopefully the measure continues to remain large

even under the evaluation perspective on Fnq \ E .

217

This is certainly a legitimate plan but the difficulty is in proving item 5. The calculations

for the projected shifted partials were intricate enough, and it unclear how to convert those

to the evaluation perspective with a few columns removed. Furthermore, it is important

to keep the rough ballpark of parameters in mind. If we are hoping to have parameters

for k and ` similar to those in Chapter 20, then we are dealing with matrices with roughly

2n · exp(O(
√
d log n)) rows (indexed by derivatives of order k = O(

√
d) and shifts of order

` ≈ n/2) but close to qn columns. It would have been fine if we actually had all qn columns but

we have to instead work with evaluations only on Fnq \E for a set E of size exp (−
√
d)·qn � 2n.

In Chapter 10, we used the property that any linear combination of determinantal minors

have many non-zero evaluations. Such a statement is simply false for this setting as we are

dealing with polynomials that are multiplied by monomials of degree ≈ n/2 and are hence

going to be zero at many evaluations. Therefore, one needs a different strategy.

Idea 1: Since we are dealing with a matrix of evaluations, it can be naturally written as

a product of a “coefficient matrix” and a “Vandermonde matrix”.

Mons of degree

at most `+ d− k
E

a

xβ∂xα
=

E

a

xβ∂xα

eval. of xβ∂xα(f) at a

Formally, let C be a matrix with rows indexed by shifted partials and columns indexed

by monomials of the right degree, so that each row of C is just the coefficients of a shifted

partial xβ∂xα(f) mod I listed down. Also, let V be the evaluation matrix of the monomials

where rows are indexed by monomials and columns indexed by points in Fnq . Then the

product C · V is precisely the evaluation matrix of shifted partials modulo I. Furthermore,

discarding a set E of evaluations is just discarding the corresponding columns from V .

In Chapter 20, we essentially showed that the matrix C for NWd,m,e has pretty large

row-rank. Furthermore, it is easy to show that V also has full-rank. Since E is a fairly small

set, we should expect Ṽ , which is V with the columns indexed by E removed, to also have

very large rank. Can we therefore claim that C · Ṽ also has large rank? In some sense, we

certainly can.

218

Lemma 22.7 (Rank of products). For matrices X · Y = Z, we always have that

rank(X) ≥ rank(Y) + rank(Z) − (common dimension)

where common dimension denotes the number of columns of X or the number of rows of Y .

Of course, if Ṽ has full-rank then rank(M) = rank(C). The problem is that if we are

forced to look at a subset of evaluations and hence Ṽ may not be full rank. When we are

looking at all evaluations on Fnq , then the matrix V and Ṽ has much more 2n rows as row

indices would also involve non-multilinear monomials. However C just has 2n rows and hence

they could potentially all be in the left-kernel of Ṽ thus making C · Ṽ = 0. Thus, we need a

way of reducing the number of rows in V to about 2n.

Idea 2: Do not consider evaluations on Fnq but just evaluations on {0, 1}n ⊂ Fnq .

That way, it is equivalent to reducing all polynomials I = 〈x2
i − xi : i ∈ [n]〉 and hence the

rows of V (or columns of C) would be indexed by only multilinear monomials of degree at

most ` + d − k, which is the same regime as in Chapter 20. Hence, we can hope to use

Lemma 22.7 to lower bound the measure for NWd,m,e.

The problem now becomes item 4, the “high rank” gates. Consider the high-rank term

(x1 + 2) · · · (xn + 2) over say F7. This term remains non-zero when we evaluate on any point

in {0, 1}n.

Idea 3: Do not consider evaluations on {0, 1}n but rather on a shift of {0, 1}n.

Picking a random point Fnq can be thought of as first picking a point c ∈ Fnq , and then

picking a shift x ∈ {0, 1}n and returning c + x. Therefore, if we have an event that is good

for a random point in Fnq , this also shows that there exists a c ∈ Fnq for which the event is

good for a random point in c + {0, 1}n.

Lemma 22.8. Let A be an function on Fnq and suppose Ey∈Fnq [A(y)] ≥ δ. Then, there exists

a point c ∈ Fnq such that

E
y∈c+{0,1}n

[A(y)] ≥ δ

In this setting, if the event is the vanishing of all high-rank gates, we now have that there

219

exists a translate of a hypercube c + {0, 1}n such all high rank gates vanish on most points

in this translate of a hypercube.

We are now back to item 5, lower bounding the rank of the evaluation matrix for NWd,m,e.

Since we are only dealing with a translate of a hypercube, we can finding a support-to-degree

ideal I that respects evaluations on c + {0, 1}n.

Lemma 22.9 ([KS17] Multilinearization for translate of hypercubes). Let c+{0, 1}n. Then

there exists a support-to-degree ideal I such that every polynomial f(x) ∈ Fnq has a unique

multilinear representative g with deg(g) ≤ deg(f) that agrees with f on c + {0, 1}n.

Proof. Since each xi can only take values ci or ci + 1, it suffices to replace each x2
i by either

c2
i or (ci+1)2 depending on the value of xi. It is easy to find a linear polynomial `i such that

`i(ci) = c2
i and `i(ci+1) = (ci+1)2 — a simple calculation yields `i(x) = c2

i +(x−ci)(2ci+1).

Hence, if we define I to be

I =
{
x2
i − c2

i − (xi − ci)(2ci + 1) : i ∈ [n]
}
,

clearly this is a support-to-degree ideal (Definition 22.2) and by definition does not alter the

evaluation on c + {0, 1}n.

With this multilinearization lemma, the coefficient matrix C has columns indexed by

just multilinear monomials of degree at most `+ d− k which makes the dimensions C more

balanced.

These are the main ideas that go into the proof of Kumar and Saptharishi [KS17] and

from here on is just setting the right parameters etc. The rest of the exposition will leave a

lot of the proofs as exercises to the readers as the main intuitions have been exposed.

The formal measure

For a set A ⊆ Fnq , define the measure Γ
[KS]
k,`,A as follows

Γ
[KS]
k,`,A(f) = rank

{(
x=` · ∂=k(f)

)
a∈A

}
or in other words is the rank of the matrix where rows are indexed by shifts and partial

derivatives, columns are indexed by elements A and the corresponding entry being the eval-

uation of the shifted partial derivative of f at the point a.

220

22.3.1 Upper bound for a homogeneous depth-5 circuit

The upper bound would proceed in the following natural steps, similar to the discussion in

10.

Lemma 22.10 ([KS17] Eliminating high-rank gates). Let C be a homogeneous depth-5

circuit that computes an n-variate degree d polynomial over Fq. Assume that size(C) ≤
2
√
d/100. Let τ = q

√
d/6 and k = τ/2q3 = Oq(

√
d). Then, there is a set E of size at most

exp−O(
√
d) · qn such that all products of linear polynomials of rank greater than τ that are

computed by the bottom to layers of C vanish on all of Fnq \ E with multiplicity at least k.

Exercise 22.1 Prove this.

Lemma 22.11 ([KS17] Upper bound). Let C be a homogeneous depth-5 circuit of size at

most 2
√
d/100 that computes an n-variate degree d polynomial over Fq. Let τ, k, E be as above.

Then, for any A ⊂ Fnq \ E that is contained in some c + {0, 1}n, we have

Γ
[KS]
k,`,A(C) ≤ 2

√
d/100 ·

(
4d
τ

+ 1

k

)
·
(

n

`+ kτq

)
· poly(n)

This proof would proceed in a few steps.

Claim 22.12. Consider the polynomial C ′ which is obtained from C by dropping all products

of linear polynomials or rank at least τ . Then, by the choice of A,

Γ
[KS]
k,`,A(C) = Γ

[KS]
k,`,A(C ′)

Claim 22.13. If C ′ is a homogeneous depth-5 circuit with all products of linear forms having

rank at most τ , and if A is contained in some translate of a hypercube c + {0, 1}n, then

Γ
[KS]
k,`,A(C ′) = size(C ′) ·

(
4d
τ

+ 1

k

)
·
(

n

`+ kτq

)
· poly(n)

Exercise 22.2 Complete the proofs using Observation 22.3 and Lemma 22.9.

221

22.3.2 Lower bound for NWd,m,e

As mentioned earlier, to lower bound the rank of the evaluation matrix we shall write this

as C · V and use Lemma 22.7 to lower bound the rank. The matrices C and V shall be the

following:

The matrix C:

Rows are indexed by shifted partials, columns are indexed by multilinear mono-

mials of degree at most `+ d− k, and the entry in (xα · ∂xβ ,m) is the coefficient

of the monomial m in the unique multilinear representative of xα · ∂xβ(f) mod I
(Lemma 22.9).

The matrix V (A):

Rows are indexed by multilinear monomials of degree at most `+ d− k, columns

are indexed by points in A, and the entry at (m, a) is the evaluation of m at a.

We shall set parameters in NWd,m,e as we had in Lemma 20.23, then by Lemma 22.4, we

have the following bound for the rank of C.

rank(C) ≥
(
n

`

)
· (1 + ε)2d−2k · exp(−O(log2 n))

=

(
n

`+ d− k

)
· exp(−O(log2 n)) (22.14)

Moving on to the rank of V (A). Currently, A is contained in some translate c + {0, 1}n.

The following observation allows us to instead look at subsets of {0, 1}n, which is easier to

study.

Observation 22.15. For any set A and a point c ∈ Fnq , we have

rank(V (A) = rank(V (A− c)).

Exercise 22.3 Prove this.

Due to this observation, we might as well assume that A ⊂ {0, 1}n. Suppose we consider

the simpler matrix Ṽ where we have a column for every a ∈ {0, 1}n. How do we show that

Ṽ has full rank? This is because the matrix Ṽ has an lower-triangular matrix sitting inside

222

with ones on the diagonal. To elaborate a bit, if we were to order the rows by decreasing

order of degrees, and match each row (monomial) by the characteristic vector (a point a of

hamming weight at most ` + d − k), then it is easy to see that this is a lower-triangular

matrix with ones on the diagonal.

Due to this, if it so happens that A has many points from

H≤`+d−k = {a ∈ {0, 1}n : wt(a) ≤ `+ d− k} ,

then rank(V) would also be large. The point is that we only need to avoid the set E but

we are free to choose any translate we want. The same averaging argument comes into play

here to ensure that we have a large intersection with a translate of H≤`+d−k.

Lemma 22.16. Let E ⊂ Fnq be a set of size δ · qn. Then, there exists c ∈ Fnq such that

|(c +H≤`+d−k) ∩ E| ≤ δ · |H`+d−k|

From this lemma, the rank bound follows.

Lemma 22.17. For any set E ∈ Fnq of size at most δ ·qn, there exists a set A that is contained

in some c + {0, 1}n for which

rank(V (A)) ≥
(

n

`+ d− k

)
· (1− δ)

Exercise 22.4 Prove this.

Putting all of this together yields the require lower bound for the rank of the evaluation

matrix for NWd,m,e.

Lemma 22.18. Let the parameters of NWd,m,e be chosen appropriately. Then, for any set

E ⊂ Fnq of size at most exp(−O(
√
d)) · qn, there exists a set A contained in c + {0, 1}n and

is disjoint from E such that

Γ
[KS]
k,`,A(NWd,m,e) ≥

(
n

`+ d− k

)
· exp(−O(log2 n))

Combining this with 22.11, the main theorem (Theorem 22.6) of Kumar and Sapthar-

ishi [KS17] (almost1) follows.

1there is a slight technicality here that depending on Fq we choose k accordingly and hence we get that

223

“for each q there is a polynomial f for which the bound holds”. This can be fixed to instead get the right
order of quantifiers — “There is a polynomial f such that for every q ...”

224

Chapter 23

The power of non-homogeneous depth

three circuits

A ΣΠΣ circuit computes a polynomial of the form

f =
s∑
i=1

`i1 . . . `iD.

If the circuit is non-homogeneous, the degree of the circuit D could potentially be much

larger than deg(f).

The class of depth three arithmetic circuits can compute polynomials in non-trivial ways.

To illustrate a couple of examples, there is a homogeneous ΣΠΣ circuit for Permn of size

2O(n) called Ryser’s Formula [Rys63]

Permn =
∑
S⊆[n]

(−1)n−|S|
n∏
i=1

(∑
j∈S

xij

)
(23.1)

On the other hand, no ΣΠΣ circuit for the Detn significantly better than writing it as a

sum of n! monomials was known (until [GKKS16]). Further, the elementary symmetric

polynomials Symk(x1, . . . , xn) of degree k defined as

Symk(x) =
∑
S⊂x
|S|=k

∏
xi∈S

xi

can be computed by a non-homogeneous depth 3 circuit of size O(n2) over any characteristic

225

zero field. In stark contrast, [NW97] showed that any homogeneous depth 3 circuit computing

Symk requires size nΩ(k). [NW97] also showed a 2Ω(n) lower bound for homogeneous depth 3

circuits computing Permn or Detn.

Also, the results of [GR00, GK98] showed a 2Ω(n) lower bound for ΣΠΣ circuits over finite

fields that compute Detn or Permn. All these results seemed to suggest that there perhaps

is an 2Ω(n) lower bound for ΣΠΣ circuits computing Detn over characteristic zero fields as

well. If it was true over finite fields, and for homogeneous ΣΠΣ circuits, how much power

can characteristic zero fields and non-homogeneity add? As it turns out, quite a lot!

Theorem 23.2 ([GKKS16]). Let f be an n-variate degree d polynomial computed by an

arithmetic circuit of size s over any characteristic zero field. Then there is a ΣΠΣ circuit of

size s′ ≤ sO(
√
d) that computes f .

Corollary 23.3 ([GKKS16]). There is a ΣΠΣ circuit over Q, the field of rational numbers,

of size nO(
√
n).

The proof is quite short and comprises of two steps using known reductions, and going

through a bizarre intermediate model of depth 5 powering circuits. We present a longer route

towards this result that perhaps sheds more light on the reduction.

23.1 Handling non-homogeneous depth-3 circuits

Non-homogeneous models are generally difficult to deal with in the context of lower bounds.

A natural question to ask if any such non-homogeneous circuit can be converted to a suit-

able homogeneous model which may then be attacked. This was first studied by Shpilka and

Wigderson [SW01].

Let f be a homogeneous degree d polynomial computed by a possibly non-homogeneous

depth 3 circuit C of the form

f =
s∑
i=1

`i1 . . . `iD

As a first step, let us extract the degree d homogeneous component of each summand on

the RHS. Since f is a homogeneous degree d polynomial, f has to be sum of the degree d

226

homogeneous components of each summand on the RHS. Consider a single term of the form

T = (`1 + α1) · · · (`D + αD)

where each `i is a homogeneous linear polynomial, and α are elements from the field. As-

suming that the first r of the αi’s are zero, we can write T in the form (with some reuse of

symbols)

T = α · `1 . . . `r · (`r+1 + 1) . . . (`D + 1)

=⇒ Homd(T) = `1 . . . `r · Symd−r(`r+1, . . . , `D)

where Symk(x), the elementary symmetric polynomial of degree k defined as

Symk(x) =
∑
S⊂x
|S|=k

∏
xi∈S

xi

Hence, if we can show that Symd−r(x) has a not-too-large homogeneous depth 4 circuit, then

we can immediately infer that f can be computed by a not-too-large homogeneous depth

5 circuit. The following identities, attributed to Newton (cf. [Kal00]), is exactly what we

need. Define the power symmetric polynomials, denoted by Powk(x) as

Powk(x) =
∑
xi∈x

xki

Lemma 23.4 (Newton Identities). Let Symk(x1, . . . , xm) and Powk(x1, . . . , xm) denote the

elementary symmetric and power symmetric polynomials of degree k respectively, as defined

above. Then,

Symk =
1

k!
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pow1 1 0 · · · 0 0

Pow2 Pow1 2 · · · 0 0
...

...
.

...
...

...
.

...

Powk−1 Powk−2 Powk−3 · · · Pow1 k − 1

Powk Powk−1 Powk−2 · · · Pow2 Pow1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

227

Expanding the determinant on the RHS, we obtain a homogeneous expression

Symk(x) =
∑

a :
∑
i iai=k

αa · (Pow1)a1 . . . (Powk)
ak (23.5)

The number of summands bounded by the number of non-negative solutions to
∑
iai = k ,

which is precisely the number of partitions of k. By the estimates of [HR18], we know that

the number of partitions of k is bounded by 2Θ(
√
k). Thus, (23.5) yields a homogeneous depth

4 circuit for Symk(x1, . . . , xm) of size 2Θ(
√
k) ·m. In fact, the circuit is a homogeneous ΣΠΣ∧

circuit, i.e. a ΣΠΣΠ circuit where the bottom layer of multiplication in fact just raises a

single variable to a higher power.

Let us summarizing this as a lemma.

Lemma 23.6 ([SW01]). For every d ≤ n, the elementary symmetric polynomial Symd can

be computed by a homogeneous ΣΠΣ∧ circuit of size 2O(
√
d) · poly(n) over any field F of

characteristic zero.

Thus, if f is a homogeneous degree d polynomial computed by a (possibly non-homogeneous)

depth-3 circuit C of size s over a field F of characteristic zero, then f can be equivalently

computed by a ΣΠΣ∧Σ of size at most 2O(
√
d) · poly(s).

23.2 Depth reduction to depth three circuits

In this section we shall see the proof of the depth reduction of [GKKS16]. As mentioned

earlier, the proof is quite short but we shall give a slightly lengthier exposition that is close

to how the result was discovered. This route via an attempt to prove better lower bounds

for depth-4 circuits might be more insightful than the actual proof itself.

Towards proving better lower bounds for depth 4 circuits

From the depth reduction to depth-4 (Theorem 5.17), it suffices to prove a better lower

bound for explicit polynomials computed as

f =
s∑
i=1

Qi1 . . . Qir where deg(Qij) ≤
√
d , r ≤ O(

√
d) (23.7)

228

A noble goal is to show a lower bound of s = nω(
√
d). Perhaps a simpler question to ask is to

prove a lower bound for expressions of the form

f =
s∑
i=1

Q
√
d

i where deg(Qi) ≤
√
d (23.8)

Fortunately, if the goal is to prove lower bounds of nω(
√
d), then without loss of generality we

can focus on this equation instead.

Lemma 23.9. Over any characteristic zero field, given an expression of the form

f =
s∑
i=1

Qi1 . . . Qir where deg(Qij) ≤
√
d , r ≤ O(

√
d)

there is an equivalent equation

f =
s′∑
i=1

Qr
i where deg(Qi) ≤

√
d

with s′ ≤ s · 2O(
√
r).

Proof. Consider Ryser’s formula (23.1) applied for to the r × r matrix where each row is

[y1, . . . , yr].

Perm


y1 . . . yr
...

. . .
...

y1 . . . yr

 = r! · y1 . . . yr =
∑
S⊆[r]

(−1)r−|S|

(∑
j∈S

yj

)r

The lemma follows by applying this identity on each term Qi1 . . . Qir.

A very similar identity, to convert a product into sums of powers of linear polynomials,

is often attributed to Fischer [Fis94]. We shall refer to this as the Ryser-Fischer trick.

Lemma 23.10 (Ryser-Fischer Trick).

y1 . . . yr =
1

r!
·
∑
S⊆[r]

(−1)r−|S|

(∑
j∈S

yj

)r

Note that since we need to divide by r!, the above lemma fails over low characteristic

fields, in particular finite fields. Thus, proving an nω(
√
d) lower bound for expressions such as

229

(23.8) implies an nω(
√
d) lower bound for expressions such as (23.7). We shall call expressions

such as (23.8) as Σ∧ΣΠ[
√
d] circuits.

Just as we converted the top Π layer into powering layers using the Ryser-Fischer identity,

the same can be done to the lower layer of Π gates as well.

Corollary 23.11. If a homogeneous n-variate degree d polynomial f can be computed by

a ΣΠ[O(
√
d)]ΣΠ[

√
d] of size s = nO(

√
d), then f can also be computed by an Σ∧[O(

√
d)]Σ∧[

√
d]Σ

circuit of size s′ = s · 2O(
√
d).

Conversely, if f requires Σ∧[O(
√
d)]Σ∧[

√
d]Σ circuits of size s′ = nω(

√
d) to compute it, then

f cannot be computed by polynomial sized arithmetic circuits.

We shall take a small detour to apply this to the conversion of non-homogeneous depth

3 circuits to homogeneous shallow circuits.

Revisiting non-homogeneous depth 3 circuits

From Section 23.1, we know that any non-homogeneous ΣΠΣ circuit can be converted to

a homogeneous ΣΠΣ∧Σ circuit, and this was essentially by writing elementary symmetric

polynomial Symd has a homogeneous ΣΠΣ∧ circuit of size 2O(
√
d) · poly(n):

Symd(x) =
∑

a :
∑
i iai=d

αa · (Pow1)a1 . . . (Powd)
ad

To convert this ΣΠΣ∧ circuit to a Σ∧Σ∧ circuit, we could use Ryser-Fischer’s identity

again. At first sight, it appears as though this would yield a blow up of 2d as some of

the product gates could have fan-in d. However, notice that the sum is over ai’s satisfying∑
i · ai = d. Hence, there can be at most O(

√
d) of the ai’s that are non-zero. By looking

at Ryser-Fischer’s identity applied on ya1
1 . . . yadd more carefully, we see that it uses at most

(1 + a1) . . . (1 + ad) ≤ dO(
√
d) distinct linear polynomials instead of the näıve bound of 2d.

This fact of expressing any degree d monomial over m variables as a Σ∧Σ circuit of size

dO(m) was also observed by Ellison [Ell69].

Thus, if f admits a poly-sized depth three circuit (possibly non-homogeneous), then f

also admits a homogeneous Σ∧Σ∧Σ circuit of size dO(
√
d) · poly(n). The following lemma

summarizes this discussion.

Lemma 23.12. Let f be an n-variate degree d polynomial that is computable by depth three

circuit of size s over Q. Then, f is equivalently computable by a homogeneous Σ∧Σ∧Σ

circuit of size dO(
√
d) · poly(s).

230

nω(
√
d) LB

for Σ∧Σ∧Σ circuits

nω(1) LB
for general circuits

nω(
√
d) LB

for ΣΠΣ circuits

??

Figure 23.1: Power of Σ∧Σ∧Σ ckts.

Conversely, if f requires Σ∧Σ∧Σ circuits of size nω(
√
d) over Q to compute it, then f

requires depth three circuits of size nω(
√
d).

In fact, this bound can be improved further and we shall address this shortly.

Completing the picture

We now have an interesting situation (Figure 23.1). On one hand, Corollary 23.11 states that

a lower bound of nω(
√
d) for Σ∧Σ∧Σ circuits would yield a super-polynomial lower bound for

general arithmetic circuits. On the other, Lemma 23.12 states that an nω(
√
d) lower bound

for Σ∧Σ∧Σ circuits would yield a lower bound of nω(
√
d) for depth three circuits.

Could this just be a coincidence? Or, is it the case that any poly-sized arithmetic circuit

can be equivalently expressed as a depth three circuit of size nO(
√
d) over Q? As it turns out,

there is indeed a depth reduction to convert any arithmetic circuit to a not-too-large depth

three circuit over Q.

To complete the picture, it suffices to show that a ∧Σ∧ circuit can be expressed as a

ΣΠΣ circuit. This would automatically imply a reduction from Σ∧Σ∧Σ circuits to ΣΠΣ

circuits. The last step of the puzzle is the duality trick of [Sax08]. A similar version of this

trick also appeared in the lower bound of Shpilka and Wigderson [SW01] but this statement

is from the work of Saxena [Sax08].

Lemma 23.13 (The Duality Trick [Sax08]). There exists univariate polynomials fij’s of

degree at most b such that

(z1 + · · ·+ zs)
b =

sb+1∑
i=1

fi1(z1) . . . fis(zs).

231

It is worth noting that the degree of each term on the RHS is sb, whereas the LHS just

has degree b. This is the place where non-homogeneity is introduced. Applying the above

lemma for a ∧Σ∧ circuit such as (ya1 + · · ·+ yas)
b gives

(ya1 + · · ·+ yas)
b =

sb+1∑
i=1

s∏
j=1

fij(y
a
j)

=
sb+1∑
i=1

s∏
j=1

f̃ij(yj)

where f̃ij(y) = fij(y
a). Since each f̃ij(y) is a univariate polynomial, it can be factorized

completely over the C, the field of complex numbers. Hence, if fij(y) =
∏

k(y − ζijk), then

we get

(ya1 + · · ·+ yas)
b =

sb+1∑
i=1

s∏
j=1

f̃ij(yj)

=
sb+1∑
i=1

s∏
j=1

b∏
k=1

(yj − ζijk)

which is a depth three circuit! Thus, (ya1 + · · ·+yas) can be expressed as a depth three circuit

of size poly(s, a, b) over C. With a little more effort, one can construct a depth three circuit

over Q as well. Summarizing this is a lemma, we have the following.

Lemma 23.14. Any n-variate degree d polynomial f computed by a homogeneous Σ∧Σ∧Σ

of size s over a characteristic zero field F can also be computed by a depth three circuit of

size poly(s, n, d) over F.

Combining with Corollary 23.11 and Theorem 5.17, we obtain the main result of [GKKS16].

Theorem 23.2 (restated). Let f be an n-variate degree d polynomial computed by an

arithmetic circuit of size s over any characteristic zero field. Then there is a ΣΠΣ circuit of

size s′ ≤ sO(
√
d) that computes f .

Remark. Note that if we were to start with a degree d polynomial f and apply the

above depth reduction, all the linear polynomials that we obtain at bottom are essentially

232

from the application of Ryser-Fischer’s identity on the bottom Π layer of fanin
√
d of the

ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit. Hence, the each of the linear polynomials that appear in the final

ΣΠΣ circuit depend on at most
√
d variables. In other words, the above Theorem yields a

reduction to ΣΠΣ[
√
d] circuits.

23.3 Revisiting the depth-five powering circuit for Symd

As mentioned earlier, the conversion of a non-homogeneous depth-3 circuit to a homogeneous

depth-5 circuit proceeds via the construction of Shpilka and Wigderson [SW01] for the el-

ementary symmetric polynomial. We present a slightly more careful study of the resulting

depth-5 circuit of this construction.

The first step in building the circuit for Symd was (23.5), to express it as

Symd(x) =
∑

a :
∑
i iai=d

αa · (Pow1)a1 . . . (Powd)
ad .

In the next step, we used the Ryser-Fischer trick (Lemma 23.10) to replace the top ×-gate

by a Σ∧Σ circuit. We then observed that a monomial ya1
1 · · · y

ad
d can be expressed as a Σ∧Σ

circuit of top fan-in at most (1 + a1) · · · (1 + ad). Since we know that the above expression

has
∑
i · ai = d, at most O(

√
d) of the ai’s are non-zero and this gives a bound of dO(

√
d).

However, one can very easily obtain a slightly better bound of 2O(
√
d) instead of dO(

√
d).

Proposition 23.15. If a1, . . . , ad are non-negative integers with
∑d

i=1 i · ai = d, then

(1 + a1) · · · (1 + ad) ≤ 2O(
√
d)

Proof. Without loss of generality, we may assume that the non-zero ai’s are the first r for

some r = O(
√
d). Given

∑
i · ai = d, we wish to infer a bound for (1 + a1) · · · (1 + ar) and a

natural approach to do this is to use the AM-GM inequality somehow. Indeed,

(1 + a1) + (2 + 2a2) + · · ·+ (r + rar) =
r(r + 1)

2
+ d ≤ 2d

=⇒ (1 + a1) · (2 + 2a2) · · · (r + rar) ≤
(

2d

r

)r
(AM-GM inequality)

=⇒ (1 + a1) · (1 + a2) · · · (1 + ar) ≤
(

2d

r

)r (
1

r!

)
=

(
d

r2

)r
· exp(r)

233

which is 2O(
√
d) for all r = O(

√
d).

Corollary 23.16. For every d ≤ n, the elementary symmetric polynomial Symd can be

computed by a homogeneous Σ∧Σ∧ circuit of size at most 2O(
√
d) · poly(n) over any field F

of characteristic 0.

Thus, specializing to non-homogeneous depth-3 circuits, we have the following immediate

corollary.

Corollary 23.17. Let f be computed by a (possibly non-homogeneous) depth-3 circuit C of

size s. Then, for every d ≤ deg(f), the d-th homogeneous part of f can be computed by a

Σ∧Σ∧Σ circuit of size exp(
√
d) · poly(s).

Further, any bound on the bottom fan-in of the circuit C translates to a similar bound on

the bottom fan-in of the resulting Σ∧Σ∧Σ circuit.

Corollary 23.16 in particular implies that the monomial x1 · · ·xn has a Σ∧Σ∧ circuit of

size 2O(
√
n). This is pretty surprising as we know of a 2Ω(n) lower bound for Σ∧Σ circuits

computing the monomial. Allowing higher powers at bottom layer might appear to be of no

assistance in computing a multilinear monomial but surprisingly it does!1

Open Problem 23.1

Show a lower bound on the size of an Σ∧Σ∧ circuit computing the monomial x1 · · ·xn.

1This observation is by Michael Forbes.

234

Chapter 24

Depth three circuits of low bottom

fan-in

Kayal and Saha [KS15a] show that the technique of projected shifted partial derivatives can

also be used to prove lower bounds for subclasses of non-homogeneous depth three circuits,

namely depth three circuits with bounded bottom fan-in. We shall denote the class of depth

three circuits of bottom fan-in bounded by r as ΣΠΣ[r] circuits. The ideas involved have also

been useful in addressing depth-4 circuits with “low-arity” [KS16b, KS15b] that we shall see

later.

24.1 ΣΠΣ circuits with bottom fan-in O(
√
d)

Now let us focus on ΣΠΣ[r] circuits, where all linear polynomials in the circuit depend on at

most r variables. The following is the key observation of Kayal and Saha [KS15a] and can

be verified easily from the proof of Lemma 23.6.

Observation 24.1 ([KS15a]). Starting with a ΣΠΣ[r] circuit C of size s computing a ho-

mogeneous n-variate polynomial of degree d, the resulting ΣΠΣ∧Σ circuit C ′ obtained from

Lemma 23.6 is in fact a ΣΠΣ∧Σ[r] circuit of size s′ = poly(s) · 2O(
√
d).

Thus, by expanding the all powers of linear polynomials computed in the bottom two layers

of the ΣΠΣ∧Σ[r] circuit C ′, the circuit C ′ can be rewritten as a homogeneous depth 4 circuit

of bottom support bounded by r and size s′′ ≤ s′ · dr

We would like to combine this with Lemma 20.23 but the only catch is the additional

dr = d
√
d cost we incur. Had that been 2O(

√
d), we would have been fine as we are hoping

235

to prove something like a n
√
d/1000 lower bound. And so far, we were dealing with NWd,m,e

with n ≈ d3 and in this regime d
√
d = n(1/3)

√
d. But if we look back at the constraints

for NWd,m,e, we only needed to ensure that me ≈ 2d, where the total number of variables

n = md. Fortunately, there is enough freedom to make d much much smaller than m but

still ensure that me = 2d by reducing e appropriately. Hence for any ε > 0, with a suitable

trade-off between d and n, we can always make sure that d
√
d is much smaller than nε

√
d.

This immediately the main theorem of [KS15a].

Theorem 24.2 ([KS15a]). Over any characteristic zero field F, any ΣΠΣ[r] circuit C com-

puting the polynomial NWd,m,e, for suitably chosen parameters n and d with n = dO(1), must

have size s = nΩ(d/r).

24.2 ΣΠΣ circuits with bottom fan-in n1−ε

Kayal and Saha [KS15a] also prove lower bounds for depth three circuits where the bottom

fan-in is bounded away from n by any polynomial factor.

Theorem 24.3 ([KS15a]). Let ε > 0 be any constant. Then over any characteristic zero

field, there exists an explicit polynomial P such that any ΣΠΣ[n1−ε] circuit computing P must

have size nΩε(
√
d).

We shall work with ε = 0.1 to save on some variables. All the ideas here can be made to

work for any ε > 0.

As a first step, we shall start with a ΣΠΣ[n0.9] circuit and use Observation 24.1 to convert

it to a homogeneous ΣΠΣ∧Σ[n0.9] circuit computing the same polynomial. As we have just

seen, if the fan-in of all the linear polynomials at the bottom were instead O(
√
d), then

we can directly apply Observation 24.1 and use Theorem 20.11 to prove the lower bound

via projected shifted partial derivatives. What we would like to do is reduce to this case

somehow, and a natural approach is to use random restrictions.

Attempt 1

We have linear forms of size n′ = n0.9 and we want to use a random restriction to reduce

keep only d′ =
√
d of the the n′ variables alive and set the rest to zero. The natural choice

is to keep a variable alive with probability p < d′

n′
and use Chernoff’s bound. Hopefully the

error probability is low enough and we can union bound over all linear forms in the circuit.

236

Lemma 24.4 (Chernoff’s Bound). Let X1, . . . , Xm be independent {0, 1} random variables

with Pr[Xi = 1] = p for all i. Then, if X =
∑
Xi and µ = E[X], for any δ > 0, we have the

following bounds:

Pr[X > (1 + δ)µ] ≤

e−δ
2µ/3 if δ < 1

e−δµ/3 if δ > 1

Hence, in the regime we are interested in, we would like (1 + δ)µ = d′ where µ = pn′ if

p is the probability with which we keep a variable alive. If δ < 1, or in other words p ≈ d′

n′
,

then this error term cannot be better than exp(−d′) = exp(−
√
d) and this is not sufficient

for the union bound over all gates as we have exp(Ω(
√
d log n)) of them.

The other possibility is that we choose p� d′

n′
but choose δ large enough so that (1+δ)µ =

d′. However in this regime, δ > 1 and hence δµ = O(d′). Once again Lemma 24.4 only gives

an error of exp(−O(d′)). Seems like we are unable to use Chernoff’s bound to reduce to the

case when the bottom fan-in is
√
d. Kayal and Saha [KS15a] do a two-step random restriction

process to make handle this differently, but let us spend a moment thinking about this as

this should be intuitively weird.

The plan was to set p small enough so that the Pr[X >
√
d] becomes exp(−Ω(

√
d log n)).

Certainly as we decrease p, this probability must go down but this is somehow not seen from

Lemma 24.4 as the error seems stuck at exp(−O(d′)). What this shows is that the bounds

provided by Lemma 24.4 are not tight enough to work in the regime when µ is very small.

Fortunately, there are better bounds known and we shall use that. (This is different from

the original analysis of Kayal and Saha [KS15a].)

24.2.1 Stronger Chernoff Bounds

The following statement is the tightest bound we know for the Chernoff bounds. We are

interested in understanding a sum of m independent, identically distributed {0, 1} random

variables, and say Pr[Xi = 1] = p. Suppose we are interested in the event that X =
∑
Xi >

(p + ε)m. Intuitively, such an event makes it seem like Pr[Xi = 1] = p + ε rather than p.

Thus one should expect that the probability of this event happening should be related to

the distance between the distributions Pr[Xi = 1] = p and Pr[Xi = 1] = p + ε. Indeed,

the following bound formalizes this by using the relative entropy or KL-divergence as the

distance measure.

237

Lemma 24.5 (Chernoff’s bound via relative entropy). Let X1, . . . , Xm be independent, iden-

tically distributed {0, 1} random variables with Pr[Xi = 1] = p and let X =
∑
Xi. For any

p′ > p, we have

Pr[X > p′m] ≤ e−m·D(p′‖p)

where D(α‖β) is the relative entropy or KL-divergence between the distributions Pr[Xi =

1] = α and Pr[Xi = 1] = β defined as

D(α‖β) := α · log

(
α

β

)
+ (1− α) log

(
1− α
1− β

)
.

All the usual bounds for Chernoff are essentially obtained by approximating the relative

entropy term in some way. We shall use this formulation to analyze the random restriction

process in a single shot. A few simplifications are in order.

Claim 24.6. For any 0 < β < α < 1/2,

0 ≥ (1− α) log

(
1− α
1− β

)
≥ −2α.

Proof. First note that since β < α, we have 1 ≥ (1−α)
(1−β)

and hence its logarithm is negative.

(1− α) log

(
1− α
1− β

)
≥ log

(
1− α
1− β

)
= log(1− α)− log(1− β)

≥ log(1− α) (∵ β < 1)

= −α− α2

2
− α3

3
· · ·

≥ −α− α2 − α3 · · ·

≥ −2α

Thus effectively, in the definition of D(α‖β), the dominant term is the first term when

β � α.

Corollary 24.7. For any 0 < β < α < 1/2, then

D(α‖β) ≥ α

(
log

(
α

β

)
− 2

)
.

238

In particular, if β � α, the negative 2 above is not relevant as it is dominated by the growing

function log(α/β) so we shall drop that for simplicity.

Let’s get back to the setting we were interested in. We have n′ = n0.9 variables, each

kept alive with some probability p. The goal was to find a suitable p so that the probability

more than d′ =
√
d among the n′ are kept alive is at most exp(−Ω(

√
d log n)). If p′n′ = d′,

then

Pr[X > d′] ≥ exp

(
−n′

(
p′ log

(
p′

p

)))
= exp (−d′ (log(p′/p)))

Therefore, all we need to do is to choose p so that log(p′/p) = Ω(log n) and we would are

done! We summarize this as a lemma, since we’d use this in the next chapter as well.

Lemma 24.8. Let S1, . . . , Sr be subsets of [n] of size at most n0.9 each and suppose r ≤
n0.01

√
d. If we pick a set R ⊆ [n] by choose every element independently with probability

√
d

n0.92 ,

then

Pr[For all i, |Si ∩R| ≤
√
d] = 1− o(1).

Therefore, as long as the size of the ΣΠΣ[n0.9] circuit is not too large, we can apply a

random restriction with probability p =
√
d

n0.92 and reduce to the case of ΣΠΣ[
√
d] circuits.

24.2.2 Building the hard polynomial

The task now is to build a hard polynomial P with a suitable trade-off between the number

of variables and its degree so that even after a random restriction ρε for say ε = n−0.99, the

polynomial ρε(P) has a large dimension of projected shifted partial derivatives. We can once

again use the NW polynomial family and make it robust to such projections using the linear

blow-up trick (Lemma 20.5).

Fix some parameter d and choose m, e as in Lemma 20.23 so that NWd,m,e has nearly

maximal dimension of projected shifted partial derivatives. Now consider the hard polyno-

mial to be NWd,m,e ◦Lin obtained by replacing each variable of NWd,m,e by a sum of d1000

fresh variables. Hence we are now in a setting where we have an n-variate polynomial of

degree d with n ≥ d1000.

239

Now suppose this polynomial is computed by a ΣΠΣ[n0.9] circuit. Applying ρε, we get

that ρε(NWd,m,e ◦Lin) is computed by a ΣΠΣ[
√
d] circuit.

ΣΠΣΠ[2
√
d] + (non-multiquadratic).

Since ρε(NWd,m,e) has a copy of NWd,m,e sitting inside, by setting additional variables to

zero, we now have a circuit of the same form as above computing NWd,m,e and we have our

lower bound from Lemma 20.6 and Lemma 20.23:

Γ
[PSD]
k,`

(
ΣΠΣ[

√
d]
)
≤ Γ

[PSD]
k,`

(
ΣΠΣΠ[

√
d]
)

+ Γ
[PSD]
k,` (non-multiquadratic)

= Γ
[PSD]
k,`

(
ΣΠΣΠ[

√
d]
)

� Γ
[PSD]
k,` (NWd,m,e).

This completes the proof of Theorem 24.2.

Exercise 24.1 Use these techniques to prove a similar lower bound for hom. ΣΠΣΠΣ[n0.9]

circuits.

Remark. In the paper of Kayal and Saha [KS15a], the focus was on the NW polynomial

as their proof used the calculations seen in Theorem 20.11 which are tailored to NW. Bera

and Chakrabarti [BC15] instead gave a lower bound for IMM but for hom. ΣΠΣΠΣ[n0.5−ε]

circuits and showed an nΩ(
√
d). ♦

240

Chapter 25

Depth four circuits of low arity

Subsequent to the Kayal and Saha [KS15a] lower bound for non-homogeneous depth ΣΠΣ[n0.9]

with small bottom fan-in, this was almost simultaneously generalized by two independent

works of Kumar and Saraf [KS16b] and Kayal and Saha [KS15b].

25.1 The model of computation

Definition 25.1 (Low arity depth-4 circuits). We say that a polynomial f can be computed

by an arity-r depth-4 circuit of size S if it can be written as

f =
s∑
i=1

t∏
j=1

Qij

where S ≤ s · t and each Qij is an arbitrary polynomial on just r variables.

We shall use ΣΠ~[r] to refer to such computations, where the ~[r] stands for an arbitrary

polynomial on r variables. ♦

Clearly, ΣΠΣ[r] circuits are a special case of ΣΠ~[r] circuits. In the above definition, we

stress that the Qijs are any polynomials and can even be of exponential degree. The only

constraint the model imposes is that they depend on only r variables.

The main theorem of Kumar and Saraf [KS16b] and Kayal and Saha [KS15b] is the

following.

Theorem 25.2 ([KS16b, KS15b]). Assume that the characteristic of the base field is 0

(or large enough). For every ε > 0, there is an explicit n-variate degree d homogeneous

241

polynomial P ∈ VNP such that any ΣΠ~[n1−ε] circuit computing it must have size at least

nΩε(
√
d).

The rest of the chapter, we shall see a proof of this. Once again, we shall work with n0.9

instead of n1−ε as that would have all the ideas and save us some notation.

Reducing to
√
d-arity circuits

Let us assume that the circuit is at most n0.01
√
d. As seen in the previous chapter, we

can always use a random restriction by setting each variable independently to zero with

probability 1 −
√
d

n0.92 to reduce the arity of such a circuit to
√
d via Lemma 24.8. Hence, it

suffices to work with just the case of
√
d-arity circuits.

25.2 Warm-up: Small product fan-in case

As a first step, let us consider a simpler setting where the fan-in of the Π layer is bounded

by d, the degree of the polynomial. That is, we have an expression of the form

f =
s∑
i=1

Qi1 · · ·Qid

where each Qij is an arbitrary polynomial on
√
d variables. (If the Qijs were linear, then we

are looking at the case of homogeneous ΣΠΣ circuits as a warm-up). We would like to show

that for an explicit polynomial f any expression such as the one above must have s = nΩ(
√
d).

Let us expand each Qij as a sum of monomials, and let Q′ij be the multiquadratic part of

Qij. Hence,

f =
s∑
i=1

Q′i1 · · ·Q′id + (non-multiquadratic)

However, since Q′ij depends on just
√
d variables and is multiquadratic, its degree can be at

most 2
√
d. Thus the first term above is a ΣΠ[d]ΣΠ[2

√
d] circuit. Therefore,

Γ
[PSD]
k,` (f) ≤ Γ

[PSD]
k,`

(
ΣΠ[d]ΣΠ[2

√
d]
)

242

If we can show that the RHS is not too large, we would be done. Repeating the standard

calculations from Lemma 20.6, it can be seen that

Γ
[PSD]
k,` (f) ≤ s ·

(
d

k

)
·
(

n

`+ k
√
d

)

The only difference from the expression in Lemma 20.6 is the first
(
d
k

)
term which was

(
O(
√
d)

k

)
earlier. But nevertheless we would be choosing k ≤

√
d, we know that

(
d
k

)
= d

√
d. Since we

are hoping for a lower bound something like n0.01
√
d, we can always make n� d in order to

ensure that d
√
d � n0.01

√
d. Therefore, this first term is a lower order term that won’t really

affect the calculations.

Since the second term is essentially the same as in Lemma 20.6, we can use Lemma 20.23

to get

Γ
[PSD]
k,`

(
Π[d]ΣΠ[2

√
d]
)
� Γ

[PSD]
k,` (NWd,m,e)

giving us the lower bound on s.

25.3 Taming the product fan-in

It is useful to keep the ΣΠΣ[r] case at the back of our minds. How were we able to control

the Π-fanin there? There, we use Sym to extract the d-th homogeneous part from the ΣΠΣ

circuit and expressed that as a homogeneous ΣΠΣ∧Σ circuit. We shall do something similar

here. For any polynomial P and positive integer i, recall that Homi(P) refers to the i-th

homogeneous component of P and let Hom≤i(P) refer to the sum of the homogeneous parts

of degree up to i of P .

Let’s focus on one term T = Q1 · · ·Qt. Say the first a of the Qis have a zero constant term.

As for the rest, we may assume that the constant term is one by scaling T appropriately.

Hence, we have an expression of the form

T = Q1 · · ·Qa · (1 +Q′1) · · · (1 +Q′t)

Firstly, note that if a > d, then Homd(T) = 0 as all monomials in the RHS have degree more

than d. Hence we can assume that a ≤ d.

243

Claim 25.3. If T = Q1 · · ·Qa · (1 +Q′1) · · · (1 +Q′t), then

Homd(T) = Homd

(
Q1 · · ·Qa ·

d∑
i=0

Symi(Q
′
1, . . . , Q

′
t)

)
.

Proof. The only monomials present in T that are not in Q1 · · ·Qa ·
∑d

i=0 Symi(Q
′
1, . . . , Q

′
t)

are monomials that are obtained by multiplying more than d of the Q′is. But such monomials

must have degree more than d and hence cannot contribute to Homd(T).

Therefore if T is a Π~[
√
d] circuit, since each Symi(y1, . . . , yt) can be expressed as a

ΣΠ[d]Σ∧ circuit of size at most 2O(
√
d) poly(t, d) (Lemma 23.6), we have that Homd(T) can

be expressed as the d-th homogeneous part of a ΣΠ[d]Σ∧~[
√
d] of size at most 2O(

√
d) poly(t, d),

which is of course also a ΣΠ[d]Σ~[
√
d] circuit (by absorbing the powering gate). The factor

of 2O(
√
d) is affordable as we are hoping to prove a nΩ(

√
d) lower bound.

Homd(T) = Homd

(
ΣΠ[d]Σ~[

√
d]
)
.

As we are only interested in the degree d homogeneous part, we might as well assume

that each of the ~[
√
d] computations are polynomials of degree at most d, as the higher degree

monomials cannot contribute to Homd(T). Thus, we have that Homd(T) is the homogeneous

degree d part of a ΣΠ[d]Σ~[
√
d] circuit of formal degree at most d2.

We have already seen earlier that the homogeneous parts of any low-degree circuit can

be computed via interpolation (Lemma 5.4) Therefore, there is a ΣΠ[d]Σ~[
√
d] circuit of size

at most 2O(
√
d) · poly(d, t) computing Homd(T). Therefore, if f is a homogeneous degree d

polynomial computed by a ΣΠ~[
√
d] circuit of size s, then by extracting the homogeneous

parts of degree d from each summand we have

f =
s∑
i=1

Homd(Ti) ∈ ΣΠ[d]Σ~[
√
d], size 2O(

√
d) poly(d, t).

Just as we did in the warm-up case, we can now split each ~[
√
d] computation as its multi-

quadratic part and the non-multiquadratic part to get an expression of the form

f = ΣΠ[d]ΣΠ[2
√
d] + (non-multiquadratic).

244

Hence using Lemma 20.23 and Lemma 20.6,

Γ
[PSD]
k,`

(
ΣΠ[d]ΣΠ[2

√
d] + non-multiquadratic

)
≤ s · 2O(

√
d) · poly(d, t)

· Γ
[PSD]
k,` Π[d]ΣΠ[2

√
d]

� Γ
[PSD]
k,` (NWd,m,e)

unless s · t = nΩ(
√
d). Therefore any ΣΠ~[

√
d] circuit computing NWd,m,e must have size at

least nΩ(
√
d).

Furthermore, using Lemma 20.5, any ΣΠ~[n0.9] circuit computing NWd,m,e ◦Lin must

have size at least nΩ(
√
d), and that completes the proof of Theorem 25.2.

245

Chapter 26

Arithmetic circuits with locally low

algebraic rank

We have been studying depth four circuits over the last few chapters. One of the goals

has been to handle some amount of non-homogeneity while assuming other structure on the

circuit. The main reason for this quest is that proving a lower bound of nω(d1/3) for non-

homogeneous depth four circuit would suffice to separate VP and VNP.

In the last chapter, we looked at ΣΠΣΠ circuits that were non-homogeneous while we

imposed the restriction that the ΣΠ layer closer to the leaves computed a polynomial on

few variables. We use ~[n0.9] to refer to such polynomials and proved lower bounds for such

ΣΠ~[n0.9] circuits.

In this chapter we shall study restrictions on the Π layer closer to the root. Until now,

we were somehow reducing to the case of ΣΠ[d]ΣΠ, where the top layer of Π gates multiply

at most d polynomials together. As a warm-up to the more general models that we shall

study in this chapter, let us spend a few moments studying Σ~[d]ΣΠ circuits.

246

26.1 Preliminaries

26.1.1 Warm-up: Compositions of sparse polynomials

Definition 26.1 (Σ~[d]ΣΠ circuits). We shall say a polynomial f is computed by a Σ~[d]ΣΠ

circuit of size s it can be expressed as

f =
∑
i

Hi(Qi1, . . . , Qid),

where each Hi(y1, . . . , yd) is an arbitrary polynomial, and the sum of the sparsity of the Qijs

is at most s. ♦

Can projected shifted partial derivatives be used to prove lower bounds for this model?

Yes, indeed. The first step, as before, would be to use a random restriction to ensure that

each Qij is a sparse polynomial of low support size. But for simplicity, let us assume for now

that deg(Qij) ≤
√
d and see how the upper bound calculations work.

Consider a single term H(Q1, . . . , Qd). What can we say about any k-th order partial

derivative of this? By the chain-rule of differentiation,

∂xH(Q1, . . . , Qd) =
d∑
i=1

(∂yi(H)) (Q1, . . . , Qd) · ∂x(Qi).

Hence repeating this, it is easy to see that

∂=kH(Q) ⊆ F-span
{

(∂=kH)(Q) · ∂m1(Qi1) · · · ∂mk(Qik) : deg(m) = k
}

⊆ F-span
{

(∂=kH)(Q) · x≤k(
√
d−1)

}
=⇒ x=`∂=kH(Q) ⊆ F-span

{
(∂=kH)(Q) · x≤`+k(

√
d−1)

}
The key point is that, irrespective of how high the degree of H is, there are at most

(
d+
√
d

d

)
distinct partial derivatives of H. Hence, the upper bound is effectively the same value as

seen earlier for homogeneous depth-4 circuits such as in Lemma 20.6. Thus it is pretty clear

that projected shifted partials would give an nΩ(
√
d) lower bound here.

Observation 26.2. Assume we are working over a characteristic zero field. There exists an

explicit polynomial in VP (namely IMM with appropriate parameters) such that any Σ~[d]ΣΠ

circuit computing it requires size nΩ(
√
d).

247

Kumar and Saraf [KS16a] studied a generalization of this model by looking at what they

called ‘locally low algebraic rank’ depth four circuits and showed an nΩ(
√
d) lower bound for

such circuits over fields of characteristic zero. Subsequently, Pandey, Saxena and Sinhab-

abu [PSS18] extended it to arbitrary fields. We will need a bit of background on algebraic

rank to describe the model and we do that first.

26.1.2 Algebraic Rank

We are familiar with the notion of linear dependence between polynomials, which is to say

that there is a linear combination of the polynomials that is zero. A natural extension of

this notion is algebraic independence.

Definition 26.3 (Algebraic rank). A set of polynomials Q = {Q1, Q2, . . . , Qt} ⊆ F[x] is said

to be algebraically independent over F if there is no nonzero polynomial R ∈ F[y1, . . . , yt] such

that R(Q1, . . . , Qt) is identically zero.

A maximal subset of Q which is algebraically independent is said to be a transcendence

basis of Q and the size of such a set is said to be the algebraic rank of Q, denoted by

algRank(Q). ♦

It is a non-trivial observation that all maximal algebraically independent sets have the

same size and hence the notion of algebraic rank is indeed well-defined.

If a set of t polynomials is algebraically dependent, then the above definition says that

there is a non-zero polynomial in t variables over the underlying field, which vanishes when

composed with this set. Such a polynomial is called an annihilating polynomial of this set.

The first basic property of algebraic rank is that it is upper bounded the number of variables.

We leave this as an exercise with a hint.

Exercise 26.1 [Upper bound on algebraic rank] Show that any set of n+ 1 polynomials

over n variables have some algebraic dependency. In other words, the algebraic rank of

any set of polynomials is upper bounded by the number of variables.

Hint: (D + 1)n+1 >
(
nD+n
n

)
if D is large enough.

It is natural question to ask if one can show good upper bounds on the lowest degree

of an annihilating polynomial of a given set of polynomials. The following lemma of Kayal

shows such a bound which would be useful to us later on.

248

Lemma 26.4 (Kayal [Kay09]). Let F be a field and let Q = (Q1, Q2, . . . , Qt) be a set of

polynomials of degree d in n variables over the field F having algebraic rank k. Then there

exists a Q-annihilating polynomial of degree at most (k + 1) · dk.

Given a set of polynomials, can its algebraic rank be computed efficiently? A natural ap-

proach is to search for an annihilating polynomial but as seen in the lemma above, the degree

could be very large making this infeasible. In fact, Kayal [Kay09] showed that computing

even the constant term of the annihilator is #P-hard. However, there is a fantastic result of

Jacobi from the 1800s that gives a criterion to check if a set of polynomials is algebraically

dependent, over fields of characteristic zero.

Lemma 26.5 (Jacobian Criterion). Let Q1, . . . , Qt ∈ F[x1, . . . , xn] be polynomials over a

field F of characteristic zero. Then, the algebraic rank of the set {Q1, . . . , Qt} is equal to the

rank of the following matrix, called the Jacobian of Q, interpreted over the function field

F(x):

J (Q1, . . . , Qt) :=


∂1(Q1) ∂2(Q1) · · · ∂n(Q1)

∂1(Q2) ∂2(Q2) · · · ∂n(Q2)
...

...
. . .

...

∂1(Qt) ∂2(Qt) · · · ∂n(Qt)


Hence, we have the following randomized algorithm to compute the algebraic rank of a

given set of polynomials — compute the Jacobian of the given set of polynomials, evaluate it

at a random point of Fn and find its rank. It is a simple exercise to see that by the Schwartz-

Zippel lemma, the rank of the Jacobian evaluated at a random point on Fn is equal to the

rank of the matrix over the function field.

Although the above lemma is only over characteristic zero fields, Pandey, Saxena and

Sinhababu [PSS18] modified the criterion to work over any field. The statement is a little

technical to explain here and for simplicity we shall work only over characteristic zero fields

here.

We are now ready to describe the model of computation studied by Kumar and Saraf [KS16a].

26.1.3 Locally low algebraic rank circuits

Intuitively, if we have a set of polynomials {Q1, . . . , Qt} with algebraic rank at most r, then

morally this set behaves like a set of just r polynomials. In the case of linear independence,

249

any composition on a set of polynomials of rank at most r can be interpreted as a composition

on just r polynomials. Motivated by this, Kumar and Saraf [KS16a] study the following class

of circuits.

Definition 26.6. Let F be any field. A Σ~{{r}}ΣΠ circuit C in n variables over F is a

representation of an n variate polynomial as

C =
T∑
i=1

Hi(Qi1, Qi2, . . . , Qit)

where Hi is an arbitrary polynomial and for each i ∈ [T], algRank {Qij : j ∈ [t]} ≤ r.

The size of such a circuit will denote the sum of the number of monomials of each Qij

(the complexity of the composition Hi is irrelevant to the size). ♦

The symbol ~{{r}} is to denote that we have an arbitrary composition of polynomials with

algebraic rank bounded by r. In the paper of Kumar and Saraf [KS16a], they use the nota-

tion ΣΓ(r)ΣΠ to denote such circuits but we shall use the above notation just to maintain

consistency with the previous chapters.

The first thing to note is that if we look at the class of Σ~{{d}}ΣΠ circuits, then clearly

includes the class of homogeneous ΣΠΣΠ circuits is a subclass of them where each Hi is just

a product of at most d polynomials. Thus the above model is a vast generalization of the

class of homogeneous depth-4 circuits. Kumar and Saraf [KS16a] show that even for this

more general model, projected shifted partial derivatives can prove an nΩ(
√
d) lower bound.

Theorem 26.7 ([KS16a, PSS18]). Let F be any field of characteristic zero. There exists a

family {Pd} of polynomials in VNP, such that Pd is a polynomial of degree d in n = dO(1)

variables, and for any Σ~{{d}}ΣΠ circuit C that computes computes Pd over F must have size

nΩ(
√
d).

26.2 Lower bounds for locally low algebraic rank cir-

cuits

We begin with some intuition for why we can expect to prove lower bounds for this model

via projected shifted partial derivatives. We have already seen in Subsection 26.1.1 that

projected shifted partial derivatives can be used to give lower bounds for Σ~[d]ΣΠ circuits.

250

So the question is if we can somehow go from a Σ~{{d}}ΣΠ circuit to a Σ~[d]ΣΠ circuit. Let

us look at the case of linear rank to get some intuition.

Suppose we have a polynomial H(Q1, . . . , Qt) with dim {Q1, . . . , Qt} ≤ r. Then, there

exists some r of the Qis such that every other Qi can be written as a linear combination of

these r. Therefore, H(Q1, . . . , Qt) can be re-written as some H ′(Qi1 , . . . , Qir) ∈ ~[r]ΣΠ.

The main point is that for linear dependence, any polynomial Q that is linearly dependent

on Q1, . . . , Qt can be expressed as a linear combination of them. Can we do the same thing

for algebraic independence? Unfortunately no, for a silly reason. Consider the set {x, x2}.
Clearly, the polynomial x is algebraically dependent on x2. However, any x 6= H(x2) for any

polynomial H.

Nevertheless, Kumar and Saraf [KS16a] that such a Q can infact be “expressed” as a

polynomial combination of the Qis under a looser sense. The following lemma is key to their

lower bound.

Lemma 26.8 (Algebraic dependence to functional dependence). Let F be any field of

characteristic zero or sufficiently large characteristic. Let Q = {Q1, Q2, . . . , Qr} be a set

of algebraically independent polynomials in n. Let Q be a polynomial of degree at most d

such that Q is algebraically dependent on Q. Then, for most random1 a ∈ Fn, there exists a

polynomial F on r variables such that

Q(x + a) = Hom≤d (F (Q1(x + a), Q2(x + a), . . . , Qr(x + a))) .

Revisiting the earlier example of {x, x2}, while it is true that x 6= F (x2) for any polynomial

F , we nevertheless have

(x+ a) = Hom≤1

(
(x+ a)2

2a
+
a

2

)
as a valid equality for all a 6= 0.

We shall defer the proof of this theorem to the end of the chapter and see how this can

be used. Recall that since we are working with a Σ~{{d}}ΣΠ circuit, we would always have

r ≤ d in the above lemma. Let’s try to see if we can remove the Hom≤d operation at a small

cost. Since Q(x + a) is a polynomial of degree at most d, we would like to collect all terms

from the RHS of degree at most d. This seems difficult as written as each of Qi(x + a) is

1Here random a means an a chosen from a large enough grid in Fn. The size of this grid depends on the
degrees of the polynomials

251

non-homogeneous and the even very high degree monomials of F when evaluated on these

non-homogeneous polynomials could yield lower degree terms. But we shall keep in mind

that we do not really care about the complexity of the composition F as long as we can show

that it is a composition of few polynomials.

Lemma 26.9. Let Q = {Q1, Q2, . . . , Qr} be a set of algebraically independent polynomials

in n. Let Q be a polynomial of degree at most d such that Q is algebraically dependent on

Q. Then, for a random a ∈ Fn, there exists a polynomial F̃ in r(d+ 1) variables

Q(x + a) = F̃
(
Q

(0)
1 , . . . , Q

(d)
1 , . . . , Q(0)

r , . . . , Q(d)
r

)
where each Q

(j)
i = Homj(Qi(x + a)).

Proof. From Lemma 26.8, we have a we have a polynomial F so that

Q(x + a) = Hom≤d (F (Q1(x + a), . . . , Qr(x + a))) . (26.10)

Define a polynomial F ′(y
(0)
1 , . . . , y

(d)
1 , . . . , y

(0)
r , . . . , y

(d)
r) by

F ′(y
(0)
1 , . . . , y

(d)
1 , . . . , y(0)

r , . . . , y(d)
r) := F (y

(0)
1 + · · ·+ y

(d)
1 , . . . , y(0)

r + · · ·+ y(d)
r)

It is trivial to observe that

Q(x + a) = Hom≤d

(
F ′(Q

(0)
1 , . . . , Q

(d)
1 , . . . , Q(0)

r , . . . , Q(d)
r)
)

(26.11)

replacing Qi(x + a) by Hom≤d(Qi(x + a)) does not affect any monomial of degree at most d

in (26.10). Seems like we haven’t done much but the advantage is that all the inputs to F ′

in the above equation are homogeneous polynomials. A monomial (y0
1)e1,0 · · · (y(d)

r)er,d of F ′

can contribute a term of degree at most d in (26.11) if and only if∑
1≤i≤r
0≤j≤d

(j · ei,j) ≤ d.

Therefore, if F̃ is the sum of all monomials of F ′ satisfying
∑

i,j(j · ei,j) ≤ d, then

F̃ (Q
(0)
1 , . . . , Q

(d)
1 , . . . , Q(0)

r , . . . , Q(d)
r) = Hom≤d

(
F ′(Q

(0)
1 , . . . , Q

(d)
1 , . . . , Q(0)

r , . . . , Q(d)
r)
)

= Q(x + a)

252

Corollary 26.12. Let Q = {Q1, . . . , Qt} be a set of polynomials of degree at most d sat-

isfying algRank(Q) = r and let {Q1, . . . , Qr} be a transcendence basis. For any arbitrary

composition H(Q1, . . . , Qt), for almost all a ∈ Fn, we have

H(Q1(x + a), . . . , Qt(x + a)) = H ′
(
Q

(0)
1 , . . . , Q

(d)
1 , . . . , Q(0)

r , . . . , Q(d)
r

)
for some polynomial H ′ ∈ F[y

(0)
1 , . . . , y

(d)
r] with each Q

(j)
i = Homj(Qi(x + a)).

With this corollary we are almost done. The only catch is that we need to look at

Qi(x + a) and unfortunately translates of sparse polynomials are not sparse. But on the

other hand, if we knew something more on the structure of the Qis, say a bound on its degree

or a bound on the support size of all monomials, then we get the same bound for Qi(x + a)

as well. Once again, using a random restriction to set each variable independently to zero,

we can assume that all monomials computed at the lowest level of a Σ~{{d}}ΣΠ circuit have

support size at most
√
d. Hence the overall structure would be the following:

C ∈ Σ~{{d}}ΣΠ
random restr.

=⇒ C ∈
Σ~{{d}}ΣΠ, with√

d-bottom support size

=⇒ C(x + a) ∈
Σ~{{d}}ΣΠ, with√

d-bottom support size

Corollary 26.12

⊆
Σ~[d(d+1)]ΣΠ, with√
d-bottom support size

Therefore by Observation 26.2,

Γ
[PSD]
k,` (C(x + a)) ≤ Γ

[PSD]
k,` (C(x)) � Γ

[PSD]
k,` (NWd,m,e)

unless of course the size of C is nΩ(
√
d) giving us the lower bound. (Once again, we would

have to use Lemma 20.5 to make NWd,m,e robust to random restrictions). This completes

the proof of Theorem 26.7, assuming Lemma 26.8. (Theorem 26.7)

We only need to finish the proof of Lemma 26.8 and we shall do that in the rest of this

chapter.

26.2.1 Proof of Lemma 26.8

We have an algebraically independent set of polynomials Q = {Q1, . . . , Qr} and a polynomial

Q of degree at most d that is algebraically dependent on it. In other words, there is a non-zero

253

annihilator A(y1, . . . , yr, z) such that

A(Q1, . . . , Qr, Q) = 0.

Let us assume that A is the smallest degree annihilator. We can say a few things about the

polynomial A′(x, z) := A(Q1, . . . , Qr, z).

A(Q1, . . . , Qr, z) =: A′(x, z) = A0(Q) + A1(Q)z + · · ·+ AD(Q)zD

Firstly, it must depend on z since otherwise A(Q1, . . . , Qr, 0) = 0 contradicts the assumption

that Q was algebraically independent. Therefore, A′(x, z) = A(Q1, . . . , Qr, z) is a non-zero

polynomial with A′(x, Q) = 0. Hence, (z −Q) must divide the polynomial A′(x, z).

Given that Q is a root of A′(x, z), can we express Q as a polynomials in the coefficients of

A′ (which are in turn polynomials in Q)? The following beautiful lemma of Dvir, Shpilka and

Yehudayoff [DSY09] shows that we indeed can, under some mild non-degeneracy condition.

Lemma 26.13 (Dvir, Shpilka, Yehudayoff [DSY09]). For a field F, let P ∈ F[x, z] be a non-

zero polynomial of degree at most D in z. Let f ∈ F[x] be a polynomial such that P (x, f) = 0

and ∂zP (0, f(0)) 6= 0. If

P (x, z) =
D∑
i=0

Pi(x) · zi.

Then, for every t ≥ 0, there exists a polynomial G such that

Hom≤t[f(x)] = Hom≤t[Gt(P0, P1, . . . , PD)].

For now, let us assume this lemma and finish the proof of Lemma 26.8. We would like

to use Lemma 26.13 on the polynomial A′(x, z). The only thing to be checked is that the

non-degeneracy condition ∂zA
′(0, Q(0)) 6= 0.

There are a couple of reasons why this may fail in general. One of them is if it so

happens that (z − Q)2 divides A′(x, z), that is Q is a repeated root of A′(x, z). In this

particular instance, ∂zA
′(x, Q) is identically zero. Can this happen in our setting?

First, observe that A′′(x, z) := ∂zA
′(x, z) = ∂zA(Q1, . . . , Qr, z) is not identically zero, as

we knew that A(Q1, . . . , Qr, z) must depend on the variable z. But then if A′′(x, Q) ≡ 0, then

∂zA(y1, . . . , yr, z) is a smaller degree polynomial such that exhibits an algebraic dependency

among {Q1, . . . , Qr, Q} contradicting our choice of A.

254

Thus we can assume that A′′(x, Q) 6≡ 0. However, A′′(0, Q(0)) could now become zero

despite A′′(x, Q) being a non-zero polynomial2. This is where the shifts come in. If for most

random a ∈ Fn, we know that A′′(a, Q(a)) 6= 0. We can now shift everything by the point a.

Let Q̃i(x) := Qi(x + a) and Q̃ = Q(x + a). Therefore, we also have

A(Q̃1, . . . , Q̃r, Q̃) = 0.

Thus if Ã′(x, z) = A(Q̃1, . . . , Q̃r, z), we know that (z−Q̃) divides Ã′. Furthermore, ∂zÃ
′(0, Q̃(0)) =

∂zA
′(a, Q(a)) 6= 0. Thus, all the conditions of Lemma 26.13 are met and we have the proof

of Lemma 26.8. (Lemma 26.8)

Proof of Lemma 26.13. Let ∂zP (0, f(0)) = ε0 6= 0. The proof would be an induction on t.

For the case of t = 0, we can just set G0(P0, . . . , PD) to be the constant f(0) and hence the

base case is done.

Let’s assume that we have found a polynomial g = Gt(P0, . . . , PD) such that

Hom≤t [f] = Hom≤t [g] .

If Hom≤t+1 [f] = Hom≤t+1 [g], then we already have our inductive step and there is nothing

to be done. Hence let’s assume that Homt+1 [f] 6= Homt+1 [g] and therefore every monomial

in f − g has degree at least t+ 1.

0 = P (x, f) =
∑
i

Pi · f i

=
∑
i

Pi · (g + (f − g))i

=
∑
i

Pi · gi +

(∑
i

Pi · (igi−1)

)
· (f − g) + (deg > (t+ 1) terms)

= P (x, g) + (∂zP (x, g)) · (f − g) + (deg > (t+ 1) terms)

= P (x, g) + ε0 · (f − g) + (deg > (t+ 1) terms)

where the last equation is because every monomial of f − g has degree at least t + 1 and

the constant term of ∂zP (x, g) = ∂zP (0, g(0)) = ∂zP (0, f(0)) = ε0. Hence, by rearranging

2This would happen for example if (z −Q)(z −Q′) divides A′(x, z) with Q 6= Q′ but Q(0) = Q′(0)

255

terms,

Hom≤t+1[f] = Hom≤t+1

[
g − P (x, g)

ε0

]
.

And of course, if g can be expressed as a polynomial combination of P0, . . . , PD, then so can

g − P (x,g)
ε0

and that completes the inductive step and hence the proof of Lemma 26.13.

26.3 Functional dependence to algebraic dependence

In Lemma 26.8, we saw that we can convert an algebraic dependence between polynomials

to some sort of a functional dependence. It was observed by Pandey, Saxena and Sinhab-

abu [PSS18] that a converse of Lemma 26.8 is also true. Next we outline a simple proof of

this over fields of characteristic zero using the Jacobian described in Lemma 26.5.

Lemma 26.14 (Functional dependence to algebraic dependence). Let F be any field of

characteristic zero. Let Q = {Q1, Q2, . . . , Qr, Qr+1} be a set of algebraically independent

polynomials. Then for almost all a,

6 ∃ F such that Hom≤1 [Qr+1(x + a)] = Hom≤1 [F (Q1(x + a), . . . , Qr(x + a))] .

Proof. By the Jacobian criterion of Lemma 26.5, the Jacobian J (Q1, . . . , Qr+1) has rank

r + 1 over the function field F(x).

J (Q1, . . . , Qr+1) :=


∂1(Q1) ∂2(Q1) · · · ∂n(Q1)

∂1(Q2) ∂2(Q2) · · · ∂n(Q2)
...

...
. . .

...

∂1(Qr+1) ∂2(Qr+1) · · · ∂n(Qr+1)


By the Schwartz-Zippel lemma, for almost all a ∈ Fn, the above matrix evaluated at a

continues to be full rank. Fix any such a. Now consider the polynomial Qr+1(x + a) and

collect all the degree one terms. The coefficient of xi in Qr+1(x + a) is precisely ∂iQr+1(a).

Similarly, let us collect the degree one terms in any composition F (Q1(x+a), . . . , Qr(x+

a)). The coefficient of xi is precisely

r∑
j=1

(∂jF)(Q1(a), . . . , Qr(a)) · ∂iQj(a).

256

If Hom≤1 [Qr+1(x + a)] = Hom≤1 [Q1(x + a), . . . , Qr(x + a)], then we would have the follow-

ing matrix identity

[
∂1Qr+1(a) · · · ∂nQr+1(a)

]
=

[
F1 · · · Fr

]
·


∂1Q1(a) · · · ∂nQ1(a)

∂1Q2(a) · · · ∂nQ2(a)
...

. . .
...

∂1Qr(a) · · · ∂nQr(a)


where Fi := (∂jF)(Q1(a), . . . , Qr(a)). But the above equation yields a contradiction as we

know that the r + 1 rows of the Jacobian of {Q1, . . . , Qr+1} are linearly independent and

hence the LHS in the above matrix equation cannot be written as a linear combination of

rows of J (Q1, . . . , Qr).

Over fields of low characteristic, Pandey, Saxena and Sinhababu [PSS18] use the modified

Jacobian criterion to obtain a similar converse but the exact statement is a bit technical to

describe here.

257

Part VIII

Limitations of lower bound techniques

258

Chapter 27

Limitations of sub-additive rank

methods

So far, almost all lower bound proofs that we have seen follow this template:

1. Identify a set B of building blocks or simple polynomials.

2. Build a function Γ : F[x] → N, where Γ(f) is the rank of an associated matrix M(f)

whose entries are linear functions in the coefficients of f .

3. Show that for each building block g ∈ B we have that rank(M(g)) ≤ U .

4. Find an explicit polynomial f such that rank(M(f)) ≥ L.

5. This shows that if f = g1 + · · ·+ gs where each gi ∈ B, then s ≥ L/U .

For such a template, what is the largest we can make the ratio L/U? This would give

us an indication of the limitations of techniques that use subadditivity via building blocks

to prove the required lower bound. A beautiful result of Efremenko, Garg, Oliveira and

Wigderson [EGOW18] prove unconditional limitations of these techniques for the instances

of Waring rank1 and tensor rank and we shall see their proof in this chapter. Throughout

this chapter, the field F will be assumed to have characteristic zero.

Theorem 27.1 (Limitations for Waring Rank). Let M : F[x]=d → Matrix(F) be a map

that assigns a matrix to every homogeneous polynomial of degree d, that acts linearly, that is

1Waring rank of a polynomial is the top fan-in of the smallest Σ∧Σ-circuit computing it.

259

M(f+g) = M(f)+M(g). Suppose B =
{
`d : ` =

∑
aixi

}
; define rank(B) = max {rank(g) : g ∈ B}.

Then, for any f ∈ F[x]=d we have that

rank(M(f))

rank(M(B))
≤ (d+ 1) ·

(
n+ (d/2)

n

)
.

This shows that such sub-additive rank measures as outlined above cannot prove a lower

bound for Σ∧Σ-circuits much better than
(
n+(d/2)

n

)
, though counting arguments show that

there are n-variate degree-d polynomials that require Σ∧Σ-circuits of size 1
poly(n)

·
(
n+d
n

)
to

compute it.

Efremenko, Garg, Oliveira and Wigderson [EGOW18] also show a similar limitation for

tensor rank.

Theorem 27.2 (Limitations for Tensor Rank). Let X = X1 t · · · tXd with each |Xi| = n,

and let F[X]SML refer to the class of set-multilinear polynomials with respect to the above

partition (these are synonymous to tensors of order-d).

Let M : F[x]SML → Matrix(F) be a map that assigns a matrix to every set-multilinear

polynomial that acts linearly, that is M(f + g) = M(f) +M(g). Suppose

B =
{
`1(X1) · · · `d(Xd) : `i =

∑
aijxij

}
,

which is synonymous to rank-1 tensors. Define rank(B) = max {rank(g) : g ∈ B}. Then,

for any f ∈ F[x]SML we have that

rank(M(f))

rank(M(B))
≤ 2d · nbd/2c.

Once again, a counting argument would tell us that there are order-d tensors of rank
1
d
· nd−1. Furthermore, both in the setting of Σ∧Σ-circuits and tensor rank, current vanilla

techniques achieve a lower bound of nbd/2c. The above theorems show that this template of

proving lower bounds cannot do too much better.

We shall see the proof of Theorem 27.1 in complete detail; the proof of Theorem 27.2 is

very similar.

What does this limitation mean?

Currently, the limitations hold for tensor rank and Waring rank but it is conceivable that

there is a broader setting where such limitations can be proven. What does that imply for

260

algebraic circuit lower bounds?

Almost all the lower bounds we have discussed so far follows the template of constructing a

suitable linear matrix, upper bounding the rank of some building blocks, and lower bounding

the rank for the target polynomial. There are, nevertheless, a few exceptions that we have

seen in this survey. The first is the lower bound of Grigoriev and Karpinski [GK98] that

we saw in Chapter 10. The complexity measure used by Grigoriev and Karpinski [GR00] is

indeed via a linear matrix, but we study the rank of this matrix after a certain set of columns

have been dropped. It is unclear if such non-deterministic choices can also be captured in the

framework of Efremenko, Garg, Oliveira and Wigderson.

Another lower bound that does not go via sub-additive rank measures is the determinantal

complexity lower bound of Mignon and Ressayre [MR04] (as seen in Chapter 7). This lower

bound, though is again a rank of an associated matrix, is not proven using sub-additivity of

building blocks.

Furthermore, it should also be noted that even for Waring rank and tensor rank, we can

provide super-polynomial lower bounds via sub-additive rank measures. Of course, in the

tensor-rank setting, a lower bound of nbd/2c is trivial since this just involves flattening to

a matrix. But for most other applications, we are aiming for much weaker lower bounds

than
(
n+d
d

)
. Hence, even if this framework extends for models such as homogeneous ΣΠΣΠ

circuits, we cannot rule out the possibility that sub-additive rank methods can give lower

bounds of nω(
√
d), which is sufficient to separate VP and VNP.

Proof outline

We have a set B such that every polynomial we care about can be expressed as a linear

combination of polynomials in B. We want to think of B as a set of simple polynomials in

the sense that rank(B) = U .

Now suppose that the set B of simple polynomials can be generated by one polynomial

B(y) with |y| = m, that is for every g ∈ B there is some a ∈ Fm such that g = B(a). In the

case of Waring rank, this polynomial would be

B(y) = (x1y1 + · · ·+ xnyn)d,

261

and in the case of tensor-rank this polynomial would be

B(y) =

(
n∑
j=1

y1jx1j

)
× · · · ×

(
n∑
j=1

ydjxdj

)
.

The fact that maxa rank(M(B(a))) = U implies that the rank of the symbolic matrix

M(B(y)) over the function field F(y) is U . Now suppose f was an arbitrary polynomial, we

know that f(x) =
∑

a∈AB(a) for some finite set A since B forms a spanning set. Therefore,

we have

M(f) =
∑
a∈A

M(B(a)).

What we know is that any fixed evaluation M(B(a)) of M(B(a)) has rank at most U and

hence its rows/columns are spanned by some set of U row/column vectors. Suppose it turns

out that there are row/column vectors V1, . . . , Vt (with t not much larger than U) such

that every evaluation M(B(a)) has its rows/columns spanned by these t vectors. Then, by

linearity, so must the rows/columns of M(f)! This would let us show that rank(M(f)) ≤ t

for any arbitrary f . Efremenko, Garg, Oliveira and Wigderson show that something almost

similar is true for the setting of Waring rank or tensor rank.

Lemma 27.3 (Bounding rank of all evaluations). Consider the set-up as before for the

Waring rank or tensor rank setting. Suppose rankF(y)(M(B(y)) = U . Then there exists

a set of row vectors R1, . . . , Rt and column vectors C1, . . . , Ct′ such that every evaluation

M(B(a)) = C + R where the columns of C are spanned by {C1, . . . , Ct′} and the rows of R

are spanned by {R1, . . . , Rt}.

• For the setting of Waring rank, we have t+ t′ ≤ U · (d+ 1) ·
(
n+(d/2)

n

)
.

• For the setting of tensor rank, we have t+ t′ ≤ U · 2d · nbd/2c.

This lemma immedietely yields that rank(M(f)) ≤ U · (d + 1) ·
(
n+(d/2)

n

)
in the Waring

rank setting, and rank(M(f)) ≤ U · 2d · nbd/2c in the tensor rank setting.

In fact, as it would soon be evident from the proof, the same set-up can be used to

prove similar limitations in a more general setting. Suppose B(y) is the polynomial whose

evaluations generate the class B and suppose degyB(y) = deg f and |y| = m. Then for any

262

f ∈ span(B) we have

rank(M(f))

rank(M(B))
≤ (d+ 1) ·

(
m+ bd/2c

m

)
.

The Waring rank setting was the instantiation with m = n. Of course, if m = Ω(n2), then we

get a meaningless limitation that these techniques cannot prove lower bounds better than nd

(which is roughly the number of monomials in f anyway!) but we get a meaningful limitation

for all m = n2−ε. (In fact, the tensor rank setting can also be cast this way with m = dn,

but Theorem 27.2 improves this above bound.)

In the rest of this chapter, we shall see a proof of the key lemma (Lemma 27.3) for the

general instance when the building blocks are generated by a B(y).

27.1 The main decomposition lemma

We have a polynomial B(x,y) ∈ F[x,y] that is homogeneous in y and degyB = deg f = d;

let |y| = m and |x| = n. We shall sometime denote B(x,y) by just B(y) as we will be more

interested in B as a function of y.

B = {B(a) : a ∈ Fm}

Let us assume that M(f) is an N × N matrix, without loss of generality, for some N ≥ 0.

If U = rank(M(B)), then we have that M̃ = rankF(y)(M(B(y))) = U as a symbolic matrix.

Therefore, M̃ can be written as

M̃ = V1W
T
1 + · · ·VUW T

U

for N -length vectors Vi,Wi with entries from F(y). This is a little annoying that even though

M̃ only involves entries that are homogeneous degree d polynomials in y, the entries of the

vectors could involve rational functions in y of arbitrary numerators and denominators. A

natural question is whether every homogeneous matrix of small rank has a small homogeneous

rank-1 decomposition. Efremenko, Garg, Oliveira and Wigderson show that this is indeed

true.

Lemma 27.4 (Homogeneous rank-1 decomposition). Suppose M̃ is a matrix with entries in

F[y]=d and suppose rankF(y) M̃ = U . Then there are row vectors P1, . . . , Pt and Q1, . . . , Qt

263

such that

M̃ = P1Q
T
1 + · · ·+ PtQ

T
t ,

satisfying

• t ≤ (d+ 1)U ,

• For each i there is some 0 ≤ di ≤ d such the vectors Pi and Qi consists of homogeneous

polynomials of degree di and d− di respectively.

In other words, if the rank of a matrix M̃ involving homogeneous polynomials of degree

d as its entries is at most U , then its homogeneous rank 2 is at most (d+ 1)U .

An analogue of the above lemma holds for set-multilinear polynomials as well, where we

would like to have each rank-1 term to also be set-multilinear. This is the analogue required

in the proof of Theorem 27.2.

The proof of Lemma 27.4 is along the lines of Strassen’s division elimination and we will

defer this to later and see how to prove Lemma 27.3 using this.

Proof of Lemma 27.3. Consider the homogeneous rank-1 decomposition of M̃ given above

by Lemma 27.4:

M̃ = P1Q
T
1 + · · ·+ PtQ

T
t .

Write M̃ = R̃ + C̃ where

R̃ :=
∑

i:degPi≤ d2

PiQ
T
i , C̃ :=

∑
i:degPi>

d
2

PiQ
T
i .

We will focus on R̃; the analysis for C̃ would be analogous.

R̃(y) =
∑

i:degPi≤ d2

Pi(y)Qi(y)T

=
∑

i:degPi≤ d2

∑
e:|e|≤ d

2

ye · coeffye(Pi)Qi(y)T

=⇒ R̃(a) =
∑

i:degPi≤ d2

∑
e:|e|≤ d

2

ae · coeffye(Pi)Qi(a)T

2Defined analogously as the smallest homogeneous rank-1 decomposition

264

Hence, every row of R̃(a) is spanned by
{

coeffye(Pi) : degPi ≤ d
2
, deg ye ≤ d

2

}
. Similarly,

every column of C̃(a) is spanned by
{

coeffye(Qi)
T : degPi >

d
2
, deg ye ≤ d

2

}
. Together,

we have at most t ·
(
m+(d/2)

m

)
vectors. The statement of Lemma 27.3 follows since M(f) is a

linear combination of the evaluations {R(a) + C(a) : a ∈ Fm}

Proof of the decomposition lemma

We begin with the standard rank-1 decomposition of the symbolic matrix M̃ .

M̃ = V1W
T
1 + · · ·VUW T

U

As stated, the entries of Vi,Wi could involve rational functions in y. Nevertheless, we can

clear denominators and obtain

M̃ =
1

g(y)
·
(
V ′1W

′
1
T + · · ·V ′UW ′

U
T
)

where now g(y) and the entries of V ′i and W ′
i are honest-to-god polynomials in y. Assume

without loss of generality that g(0) = 1 (by suitable translation and scaling if necessary).

Then, g(y) = 1− g′(y) where g′(0) = 0. Therefore,

1

g(y)
= 1 + g′(y) + (g′(y))2 + · · · .

Therefore,

M̃ =
(
V ′1W

′
1
T + · · ·V ′UW ′

U
T
)
·
(
1 + g′(y) + (g′(y))2 + · · ·

)
.

Here comes the important point: even though the right hand side has infinitely many terms,

every entry on the left-hand side has degree at most d. Hence, we may just collect ho-

mogeneous components from the RHS to obtain our homogeneous decomposition. Define

g̃(y) = 1 + g′(y) + · · ·+ (g′(y))d. Then,

M̃ =
d∑
i=0

U∑
j=1

(
Homi

(
g̃ · V ′j

)) (
Homd−i

(
W ′
j

))T
.

265

Part IX

Breakthrough!

266

Chapter 28

Lower bounds for constant depth

circuits

In 2021, Nutan Limaye, Srikanth Srinivasan and Sébastien Tavenas [LST21] proved super-

polynomial lower bounds for constant depth circuits! Not just that, but they gave a ridicu-

lously simple proof of this fact! Needless to say, many parts of the introductory parts of

various chapters alluding to lack of progress etc. has been completely blown out of the wa-

ters. Admittedly, it is a little silly to discuss fairly complicated approaches to prove lower

bounds for depth-4 circuits etc. for the last how-many-ever chapters only to give a com-

pletely simple proof of super-polynomial lower bound for arbitrary constant depth circuits.

But, well, it is what it is.

In this chapter, we are going to see the full proof of their beautiful result and then worry

about correcting the narrative in the survey later.

Theorem 28.1 (Limaye-Srinivasan-Tavenas [LST21]). Let d, n such that d = o(log n). For

any ∆ > 0, any product-depth ∆ circuit computing IMMn,d, over any field of characteristic

zero, requires size nd
− exp(∆)

.

For the particular case of ΣΠΣ circuits, the lower bound is nΩ(
√
d).

As we have seen in Theorem 23.2, this lower bound for ΣΠΣ circuits is tight, up to

constants in the exponent.

Comparing with depth-reduction results. We have seen in Exercise 5.5 that any poly-

nomial sized circuit can be equivalently computed by a homogeneous product-depth ∆ circuit

of size at most nO(d1/∆). Furthermore, if we are willing to forgo homogeneity, then Theo-

rem 23.2 can be used to yield a non-homogeneous product-depth ∆ circuit of size at most

267

nO(d1/2∆). Therefore, the above theorem is tight for the setting of ∆ = 1 but not so for larger

∆.

28.1 Proof overview

The proof is surprisingly extremely simple. Roughly speaking, the proof proceeds in three

broad steps, many components of which were known!

1. Convert any arbitrary product-depth ∆ circuit into a homogeneous product-depth 2∆

circuit computing the same polynomial.

2. Convert any homogeneous product-depth 2∆ circuit computing a set-multilinear poly-

nomial into a set-multilinear product-depth 2∆ circuit computing the same polynomial.

3. Prove a lower bound for set-multilinear constant depth circuits.

Note that Lemma 23.6 already showed a version of item 1 to convert a non-homogeneous

ΣΠΣ circuit to a homogeneous ΣΠΣΠΣ circuit. Turns out, this can be generalised to larger

depth as well and we’ll discuss this later in the chapter.

As for item 2, we did see a set-multilinearisation in the context of Theorem 16.12. Turns

out, the same can also be done for constant depth circuits.

As for item 3 of proving lower bounds for set-multilinear formulas of constant depth, we

even have lower bounds for multilinear formulas of arbitrary depth! However, an important

point is that both the above steps are efficient only when d � n whereas many of the

multilinear and set-multilinear lower bounds required d to be comparable to n. Nevertheless,

Limaye, Srinivasan and Tavenas show how to use the same technique with a small but

ingenious modification.

28.2 Reducing to the set-multilinear world

We will first see how we can transform any small-depth circuit computing a lower-degree

set-multilinear polynomial into a syntactically set-multilinear small-depth circuit without

too much blow-up in size. This involves two steps as mentioned above — homogenisation

and set-multilinearisation.

268

28.2.1 Homogenisation within small depth

It is good to keep in mind that it is perhaps too much to expect to homogenise a non-

homogeneous arbitrary depth-∆ circuit into a homogeneous depth-∆ circuit of comparable

size. An excellent counter-example to this, with respect to ΣΠΣ circuits is the elementary

symmetric polynomial. We know there are non-homogeneous ΣΠΣ circuits of polynomial

size that compute it, but any homogeneous ΣΠΣ circuit computing it must be of exponential

size (Theorem 9.2).

However, if one is willing to increase the depth a little (by factor of 2), then one can

indeed homogenise an arbitrary circuit with a not-too-large blow-up in size.

Lemma 28.2 (Homogenisation within constant depth). Let C be a product-depth ∆ circuit

of size s computing an n-variate degree d polynomial. Then, there is a homogeneous circuit

C ′ of product-depth 2∆ and size 2O(
√
d) · poly(s) computing the same polynomial.

We’ll give the sketch of the proof here. It is instructive to go back to what we did in the

case of ΣΠΣ circuits. The crux is to try and extract the homogeneous part of a term of the

form

T = (1 + `1) · · · (1 + `m)

where each of the `i’s are homogeneous linear polynomials. It is clear that

Homd(T) = Symd(`1, . . . , `m).

Then, we can use the fact that Sym(z1, . . . , zm) can be computed by a homogeneous depth-

4 (or product-depth 2) circuit of size at most 2O(
√
d) poly(m) (Lemma 23.6). Therefore,

Homd(ΣΠΣ) can be computed by a homogeneous depth-5 circuit of size at most 2O(
√
d) poly(s)

size.

This proves the above lemma in the setting when ∆ = 1. In order to generalise this to

higher depth, what exactly would we need? If there is a multiplication gate g = g1×· · ·×gm,

and lets assume that we have managed to break each gi into its homogeneous parts gi,0 +

gi,1 + · · ·+ gi,d. Therefore, we wish to extract the homogeneous part

Homd(g) = Homd

(
m∏
i=1

(
d∑
j=0

gi,j

))
,

which seems very similar to the elementary symmetric polynomial except that it is a “weighted”

269

version of it:

WSymm,d(z1,0, . . . , z1,d, . . . , zm,0, . . . , zm,d) =
∑

σ:[m]→{0,...,d}∑
i σ(i)=d

m∏
i=1

zi,σ(i).

In words, we want all monomials obtained by picking up one homogeneous part from each

block such that the total degree is exactly d. Very similar to Newton identities that relate the

Symi families to the Powi families, there are similar relations between the weighted versions

of them. Mukherjee and Bera [MB18] gave a combinatorial proof of this fact.

Lemma 28.3 ([MB18]). The polynomial WSymm,d can be computed by a homogeneous ΣΠΣΠ

circuit of size at most 2O(
√
d) · poly(m).

Applying this at each gate of an arbitrary depth-∆ circuit yields Lemma 28.2.

28.2.2 Set-multilinearisation

Lemma 28.4 (Set-multilinearisation in constant depth). Let C be a homogeneous product-

depth ∆ circuit of size s computing a set-multilinear n-variate degree d polynomial f . Then,

there is a set-multilinear circuit of product-depth ∆ and size dO(d) · poly(s) computing the

same polynomial.

This is exactly the standard set-multilinearisation operation that we used in Theo-

rem 16.12 which just needs to be inspected that the same can be done with constant depth,

arbitrary fan-in circuits.

Exercise 28.1 [Set-multilinearisation in constant depth] Prove Lemma 28.4.

28.3 Lower bound for set-multilinear, small-depth cir-

cuits

Now that we have seen that any n-variate, degree d, set-multilinear polynomial that is

computed by a small product-depth ∆ circuit can also be computed by a set-multilinear

product-depth 2∆ circuit of size dO(d) · poly(s), it suffices to prove strong enough lower

bounds for small-depth set-multilinear circuits.

270

28.3.1 The complexity measure

Suppose X = X1 t · · · tXd, we will be using the familiar measure of the rank of the partial

derivative matrix. We will split d parts into two sets of buckets, that we’ll refer to as

Alice parts and Bob parts and denote them by Y1 t · · · t Yr and Z1 t · · · t Zr′ respectively

(with r + r′ = d). For this partition of variables and this split, and for any set-multilinear

polynomial f , we will defined the matrix M(f) as follows:

M(f) = Set-mult. mons. in Y

Set-mult. mons. in Z

m2

m1

coefff (m1 ·m2)

That is, this is the communication matrix when Alice is given all variables of the Alice

parts and Bob is given all variables in the Bob parts. The number of rows is
∏
|Yi| and the

number of columns is
∏
|Zi|. The measures used will be related to the rank of this matrix

but it would be convenient to use a normalised version of this, called relative-rank (denoted

by rel-rank).

µ(f) := rel-rank(M(f)) :=
rank(M(f))√
#rows ·#cols

Roughly speaking, rel-rank is a way of capturing the rank of the matrix and also take into

account the aspect-ratio of the matrix.

The following are a few simple observations of rel-rank that follows readily from the

definition.

Observation 28.5 (Simple properties of µ). The following are some simple properties about

the measure µ:

1. Trivial upper bound. For any set-multilinear polynomial f , we have

µ(f) ≤ min

{√
#rows

#cols
,

√
#cols

#rows

}
.

In particular, µ(f) ≤ 1.

271

2. Sub-additivity. For any set-multilinear sum1 f + g, we have

µ(f + g) ≤ µ(f) + µ(g).

3. Multiplicativity. For any set-multilinear product2

µ(f · g) = µ(f) · µ(g).

To illustrate the key idea, we will illustrate how to get super-polynomial lower bounds

for ΣΠΣ circuits, which translates to proving good enough lower bound for set-multilinear

ΣΠΣΠΣ circuits.

28.3.2 Lower bounds for set-multilinear depth-5 circuits

Until now, we didn’t really bother much about the sizes of the parts with Alice and Bob but

this will be crucial! Let k be a parameter that is set to (log2 n)/2 and we will assume that

k >
√
d

2
.

We will only consider set-multilinear polynomials of degree d, where each Alice part Yi

has size exactly 2
k− k√

d and each Bob part Zj has size exactly 2k. (To avoid the use of floors

and ceilings, we will assume that k is divisible by
√
d). However, we will set up the number

of Alice parts and Bob parts so that∏
|Yi| ≈

∏
|Zi|

so that the matrix M(f) is almost a square matrix. The imbalance between the sizes of the

Alice parts and the Bob parts will be crucial in the proof.

The hard polynomial, for now, will be whatever P makes the matrix M(P) = I and

hence µ(P) = 1. Noticing that we can actually find an efficiently computable polynomial

with µ(P) = 1 is mostly an after-thought and we’ll do that later. (TODO)

1That is, f and g set-multilinear with respect to the same parts.
2That is, f and g set-multilinear on disjoint sub-partitions.

272

Warm-up: Lower bounds for set-multilinear ΣΠΣ circuits

If ` is any set-multilinear linear polynomial, then ` must only involve a single part Xi.

Therefore,

µ(`) ≤ 1√
|Xi|

.

Hence, if C is a size s set-multilinear ΣΠΣ circuit, then

µ(C) ≤ s · 1√
|X1| · · · |Xd|

The lower bound

Lemma 28.6 (Lower bound for set-multilinear depth-5 circuits). Let f be a set-multilinear

polynomial with respect to the partition defined above, with d = o(log2 n). If f is computable

by a size s, set-multilinear ΣΠΣΠΣ circuit, then

µ(f) ≤ s · 2−k
√
d/8.

Once we have this lemma, the lower bound is an immediate corollary.

Corollary 28.7. Let f be a set-multilinear polynomial with respect to the above parts with

µ(f) = 1. Then, any set-multilinear ΣΠΣΠΣ circuit computing it must have size nΩ(
√
d).

Proof of Lemma 28.6. The proof of this Lemma is embarrassingly simple. Suppose, C =

T1 + · · · + Tr where each Ti is a set-multilinear ΠΣΠΣ circuit of size si, then we know that

s ≤
∑
si. Thanks to sub-additivity, it suffices to show that µ(Ti) ≤ si · 2−k

√
d/8. Hence, let

us focus on one such term

T = Q1 . . . Qt

where (reusing some variables) T has size bounded by s and is a set-multilinear product

of set-multilinear ΣΠΣ circuits. Without loss of generality, let Q1 have the largest degree

among Q1, . . . , Qt.

Case 1: deg(Q1) >
√
d/2. In this case, Q1 is a size-able factor and hence “the loss”

273

from Q1 is going to be sufficient for us.

µ(T) = µ(Q1) · · ·µ(Qt) ≤ µ(Q1)

≤ s · 1√
|Xi1| · · ·

∣∣Xid′

∣∣ ≤ s · 2−
√
d

4
·
(
k− k√

d

)
≤ s · 2−k

√
d/8.

Case 2: deg(Qi) ≤
√
d/2 for all i. Since µ is multiplicative, we have

µ(T) = µ(Q1) · · ·µ(Qt).

We will show that µ(Qi) � 1 purely from the fact that M(Q1) will be far from a square

matrix!

Let us focus on one factor Q. Suppose this factor depends on a Alice parts and b Bob

parts. Further, a + b = deg(Q) ≤
√
d/2. Let us get a sense of the number of rows and

columns in the matrix M(Q).

#rows = 2
a·
(
k− k√

d

)
,

#cols = 2b·k,

=⇒ µ(Q) ≤ min

{√
#rows

#cols
,

√
#cols

#rows

}
= 2

−k·
∣∣∣a(k− k√

d

)
−bk

∣∣∣
=: 2−k·|E|

where E = a
(

1− 1√
d

)
− b. The key point is that E is not close to zero just for the simple

reason that the fractional part of E is substantial.

If a ≤ b, then E is negative. Hence,

E = a

(
1− 1√

d

)
− b

≤ deg(Q)

2
·
(

1− 1√
d

)
− deg(Q)

2

=
− deg(Q)

2
√
d

.

274

If a > b, then E is positive. There, we have

E ≥ {E} =

{
1− 1√

d

}
>

1

2
>

deg(Q)

4
√
d
.

Therefore,

µ(Q) ≤ 2
− k·deg(Q)

4
√
d

=⇒ µ(T) = µ(Q1) · · ·µ(Qt) ≤ 2
− k·deg(T)

4
√
d = 2−k

√
d/4

And that completes the proof!

28.3.3 Lower bounds for larger depth

The lower bound for larger depth proceeds exactly along the same lines (with a few minor

technical issues that need to get sorted out). Suppose we are dealing with a depth-7 set-

multilinear circuit instead. The idea is to proceed exactly along the same lines. Say this

circuit C = T1 + · · ·+Tr, it suffices to focus on each summand Ti. Suppose such a summand

T = Q1 · · ·Qt where each Qi is now a set-multilinear depth-5 circuit.

Case 1: deg(Q1) is large. In this case, just use the upper-bound we just proved for

set-multilinear depth-5 circuits to bound µ(Q1) and hence µ(T).

Case 2: All deg(Qi)’s are small. Use the same argument to show that each M(Qi) is

non-square-ish to get the upper bound on µ(Qi) and hence µ(T).

The only technical hurdle is that earlier we had chosen our k depending on what degree

we were working with etc. but now the choice needs to be flexible. If we think about it, all

we want is to make sure that if Alice parts are of size αk and Bob parts are of size k, then

we want |aα− b| to be large when a and b are not too large. Here is an easy fix — take α

to be an irrational number, like
√

2! But then, we want 2αk to be an integer as well. Turns

out, taking Alice parts to be of size 2dαke and Bob parts to be of size 2k is sufficient to make

the proof work.

That’s basically the proof for arbitrary constant depth as well.

RP: Fill in the details

275

28.4 Getting the lower bound for IMM

As mentioned earlier, an explicit hard polynomial with respect to the above measure is

to just choose a polynomial P such that M(P) looks like the identity matrix. With this

definition, we might just be able to say that P ∈ VNP but with a bit more care, we can find

a hard-polynomial that is actually computable by a polynomial sized set-multilinear ABP

and hence extend the above lower bounds to IMM as well.

28.4.1 Re-interpreting the polynomial

Let us consider a more general setting where Yi = 2wi and Zi = 2vi for some positive integers

wi and vi. This allows us to just name the variables in each of these parts using binary

strings of the appropriate length:

Yi =
{
y(i)
a : a ∈ {0, 1}wi

}
Zi =

{
z

(i)
b : b ∈ {0, 1}vi

}
.

Hence, asking for M(P) = I is the same as saying that P must be a sum of monomials of

the form

P =
∑

a,b such that
a1···ar=b1···br′

y(1)
a1
· · · y(r)

ar · z
(1)
b1
· · · z(r′)

br′

(If the
∏
|Yi| 6=

∏
|Zi|, then one can work with monomials where the indices concatenated

on the smaller side is a prefix of the indices concatenated on the larger side so that M(P)

becomes a full-rank matrix).

The key point is that, as long as |Yi| , |Zi| = poly(n), the above polynomial is computable

by a set-multilinear ABP of polynomial size.

Lemma 28.8. Let Y1, . . . , Yr, Z1, . . . , Zr′ be sets as above with |Yi| , |Zi| ≤ m, and P defined

as above. Then there is a poly(m, (r + r′))-sized set-multilinear ABP computing P .

Proof. Intuitively, the polynomial P looks like the inner-product or the doubling polyno-

mial in the non-commutative setting. Typically, an ABP cannot “remember” the entire

concatenated Y indices to currently evolve the Z-part. However, we can choose to carefully

interleave the parts so that the ABP will never have to “remember” too much. Here is how

we are going to build the order in which variables are going to be read:

276

Suppose we have chose Y1, . . . , Yt and Z1, . . . , Zt′ (in some order). Let ` =∑
i≤twi−

∑
j≤t′ vi; the difference in length of the current Alice-part and Bob-part.

If ` ≤ 0, add Yt+1 next in the order. Else, add Zt′+1 next in the order.

Here is an example of such an ordering:

Yi’s: 1 4 6 7 9

Zi’s: 2 3 5 8

Notice that given the way we have defined the order, the parameter ` would never exceed

dlog2me as any intermediate imbalance is bounded by just one part.

The description of the ABP should now be intuitively clear — the ABP remembers the

“excess” string at any intermediate point and picks a variable with this excess string as

prefix. For each i, let `i be current difference in length (just like in the above ordering

algorithm) and the i-th layer will have 2`i different vertices, one for each string a ∈ {0, 1}`i .
If the excess string at the i-th layer is a ∈ {0, 1}`i , and multiplying with a variable xk from

the i+ 1-th part results in an excess string b ∈ {0, 1}`i+1 , there is an edge from v
(i)
a to v

(i+1)
b

with weight xk on it. It can be readily seen that this ABP indeed computes the polynomial

P . Furthermore, this ABP is a set-multilinear projection of IMM as all edges between layer

i and i+ 1 only involve variables

28.5 TODO: Subsequent results

There were some subsequent results proved by the Limaye, Srinivasan and Tavenas that

ought to be added here. Some of these include:

• Super-polynomial separation between depth ∆ and depth ∆ + 1

• Super-polynomial separation between homogeneous formulas and algebraic branching

programs in the non-commutative setting

277

Bibliography

[Agr05] Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In

Proceedings of the 25th International Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS 2005), pages 92–105,

2005.

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arith-

metic Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer

Science, 209(1-2):47–86, 1998.

[AKV18] Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing Sets and an Almost

Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits. In

Servedio [Ser18], pages 11:1–11:16.

[Alo09] Noga Alon. Perturbed Identity Matrices Have High Rank: Proof and Applica-

tions. Combinatorics, Probability and Computing, 18(1-2):3–15, March 2009.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth

Four. In Proceedings of the 49th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2008), pages 67–75, 2008.

[BC15] Suman K. Bera and Amit Chakrabarti. A Depth-Five Lower Bound for Iterated

Matrix Multiplication. In Conference on Computational Complexity (CCC),

pages 183–197, 2015.

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad A. Shokrollahi. Alge-

braic Complexity Theory, volume 315 of Grundlehren der mathematischen Wis-

senschaften. Springer-Verlag, 1997.

278

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using

a small number of processors. Information Processing Letters, 18(3):147 – 150,

1984.

[BLS16] Nikhil Balaji, Nutan Limaye, and Srikanth Srinivasan. An Almost Cubic Lower

Bound for ΣΠΣ Circuits Computing a Polynomial in VP. Electronic Colloquium

on Computational Complexity (ECCC), 23:143, 2016. eccc:TR16-143.

[Bre74] Richard P. Brent. The Parallel Evaluation of General Arithmetic Expressions.

Journal of the ACM, 21(2):201–206, April 1974.

[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. The-

oretical Computer Science, 22:317–330, 1983.

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory.

Algorithms and Computation in Mathematics. Springer, 2000. Online version:

http://math-www.uni-paderborn.de/agpb/work/habil.ps.

[Cai90] Jin-Yi Cai. A note on the determinant and permanent problem. Information

and Computation, 84(1):119–127, 1990.

[CCL08] Jin-Yi Cai, Xi Chen, and Dong Li. A quadratic lower bound for the permanent

and determinant problem over any characteristic 6= 2. In Proceedings of the 40th

Annual ACM Symposium on Theory of Computing (STOC 2008), pages 491–

498. ACM, 2008.

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin.

Hardness Amplification for Non-Commutative Arithmetic Circuits. In Servedio

[Ser18], pages 12:1–12:16.

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic

Complexity (and beyond). Foundation and Trends in Theoretical Computer

Science, 2011.

[CLO07] David A. Cox, John B. Little, and Donal O’Shea. Ideals, Varieties and Algo-

rithms. Undergraduate texts in mathematics. Springer, 2007.

[CM14] Suryajith Chillara and Partha Mukhopadhyay. Depth-4 Lower Bounds, Deter-

minantal Complexity : A Unified Approach. Proceedings of the 31st Symposium

on Theoretical Aspects of Computer Science (STACS 2014), 2014.

279

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating

multilinear branching programs and formulas. In Proceedings of the 44th Annual

ACM Symposium on Theory of Computing (STOC 2012), pages 615–624, 2012.

eccc:TR11-134.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-Randomness Trade-

offs for Bounded Depth Arithmetic Circuits. SIAM Journal of Computing,

39(4):1279–1293, 2009. Preliminary version in the 40th Annual ACM Sympo-

sium on Theory of Computing (STOC 2008).

[EGOW18] Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson.

Barriers for Rank Methods in Arithmetic Complexity. In 9th Innovations in

Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018,

Cambridge, MA, USA, pages 1:1–1:19, 2018.

[Ell69] W.J. Ellison. A ‘Waring’s Problem’ for homogeneous forms. Proceedings of the

Cambridge Philosophical Society, 65:663–672, 1969.

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics

Magazine, 67(1):59–61, 1994.

[FLMS15] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan.

Lower Bounds for Depth-4 Formulas Computing Iterated Matrix Multiplica-

tion. SIAM J. Comput., 44(5):1173–1201, 2015. Preliminary version in the 46th

Annual ACM Symposium on Theory of Computing (STOC 2014).

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of

Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In

Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer

Science (FOCS 2013), pages 243–252, 2013.

[GK98] Dima Grigoriev and Marek Karpinski. An Exponential Lower Bound for Depth

3 Arithmetic Circuits. In Proceedings of the 30th Annual ACM Symposium on

Theory of Computing (STOC 1998), pages 577–582, 1998.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Ap-

proaching the Chasm at Depth Four. Journal of the ACM, 61(6):33:1–33:16,

2014. Preliminary version in the 28th Annual IEEE Conference on Computa-

tional Complexity (CCC 2013).

280

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arith-

metic Circuits: A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016.

Preliminary version in the 54th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2013).

[GLSS12] Dmitry Gavinsky, Shachar Lovett, Michael Saks, and Srikanth Srinivasan. A

Tail Bound for Read-k Families of Functions. CoRR, abs/1205.1478, 2012.

[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential Lower Bounds for

Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields. Appl.

Algebra Eng. Commun. Comput., 10(6):465–487, 2000. Preliminary version in

the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS

1998).

[Gro] Joshua Grochow. http://cstheory.stackexchange.com/questions/19261/

degree-restriction-for-polynomials-in-mathsfvp/19268#19268.

[H̊as90] Johan H̊astad. Tensor Rank is NP-complete. J. Algorithms, 11(4):644–654,

December 1990. Preliminary version in the 16th International Colloquium on

Automata, Languages and Programming (ICALP 1989).

[HR18] G. H. Hardy and Srinavasa Ramanujan. Asymptotic Formulæ in Combina-

tory Analysis. Proceedings of the London Mathematical Society, s2-17(1):75–115,

1918.

[HWY10] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits

and the sum-of-squares problem. In Proceedings of the 42nd Annual ACM Sym-

posium on Theory of Computing (STOC 2010), pages 667–676, 2010.

[HY11] Pavel Hrubeš and Amir Yehudayoff. Homogeneous Formulas and Symmetric

Polynomials. Computational Complexity, 20(3):559–578, 2011.

[HY16] Pavel Hrubeš and Amir Yehudayoff. On Isoperimetric Profiles and Compu-

tational Complexity. In Proceedings of the 43rd International Colloquium on

Automata, Languages and Programming (ICALP 2016), pages 89:1–89:12, 2016.

Preliminary version in the Electronic Colloquium on Computational Complexity

(ECCC), Technical Report TR15-164.

281

[Hya79] Laurent Hyafil. On the Parallel Evaluation of Multivariate Polynomials. SIAM

Journal of Computing, 8(2):120–123, 1979. Preliminary version in the 10th An-

nual ACM Symposium on Theory of Computing (STOC 1978).

[JS82] Mark Jerrum and Marc Snir. Some Exact Complexity Results for Straight-Line

Computations over Semirings. Journal of the ACM, 29(3):874–897, 1982.

[Kal85] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational Functions.

SIAM Journal of Computing, 14(3):678–687, 1985.

[Kal00] D. Kalman. A Matrix Proof of Newton’s Identities. Mathematics Magazine,

73(4):313–315, 2000.

[Kay09] Neeraj Kayal. The Complexity of the Annihilating Polynomial. In Proceedings of

the 24th Annual IEEE Conference on Computational Complexity (CCC 2009),

pages 184–193, July 2009.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded

degree polynomials. In Electronic Colloquium on Computational Complexity

(ECCC)TR12-081, 2012.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing Polynomial Iden-

tity Tests Means Proving Circuit Lower Bounds. Computational Complexity,

13(1-2):1–46, 2004. Preliminary version in the 35th Annual ACM Symposium on

Theory of Computing (STOC 2003).

[KLSS17] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Expo-

nential Lower Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM

J. Comput., 46(1):307–335, 2017. Preliminary version in the 55th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2014).

[Koi12] Pascal Koiran. Arithmetic Circuits: The Chasm at Depth Four Gets Wider.

Theoretical Computer Science, 448:56–65, 2012.

[Kou08] Ioannis Koutis. Faster Algebraic Algorithms for Path and Packing Problems. In

Proceedings of the 35th International Colloquium on Automata, Languages and

Programming (ICALP 2008), pages 575–586, 2008.

282

[KS14a] Neeraj Kayal and Ramprasad Saptharishi. A selection of lower bounds for arith-

metic circuits. In Perspectives in Computational Complexity. Birkhäuser, Basel,

2014.

[KS14b] Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic

formulas: it’s all about the top fan-in. In Proceedings of the 46th Annual ACM

Symposium on Theory of Computing (STOC 2014), pages 136–145, 2014.

[KS14c] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4

arithmetic circuits. In Proceedings of the 55th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2014), 2014.

[KS15a] Neeraj Kayal and Chandan Saha. Lower Bounds for Depth Three Arithmetic

Circuits with Small Bottom Fanin. In Proceedings of the 30th Annual Compu-

tational Complexity Conference (CCC 2015), pages 158–208, 2015.

[KS15b] Neeraj Kayal and Chandan Saha. Lower Bounds for Sums of Products of

Low arity Polynomials. In Electronic Colloquium on Computational Complexity

(ECCC)TR15-073, 2015.

[KS15c] Neeraj Kayal and Chandan Saha. Multi-k-ic Depth Three Circuit Lower Bound.

In Proceedings of the 32nd Symposium on Theoretical Aspects of Computer Sci-

ence (STACS 2015), volume 30, pages 527–539, 2015.

[KS16a] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low alge-

braic rank. In Proceedings of the 31st Annual Computational Complexity Con-

ference (CCC 2016), 2016.

[KS16b] Mrinal Kumar and Shubhangi Saraf. Sums of Products of Polynomials in

Few Variables: Lower Bounds and Polynomial Identity Testing. In Ran Raz,

editor, Proceedings of the 31st Annual Computational Complexity Conference

(CCC 2016), volume 50 of LIPIcs, pages 35:1–35:29. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2016.

[KS17] Mrinal Kumar and Ramprasad Saptharishi. An Exponential Lower Bound for

Homogeneous Depth-5 Circuits over Finite Fields. In Ryan O’Donnell, editor,

Proceedings of the 32nd Annual Computational Complexity Conference (CCC

2017), volume 79 of LIPIcs, pages 31:1–31:30. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2017. arXiv:1507.00177.

283

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial

lower bound for regular arithmetic formulas. In Proceedings of the 46th Annual

ACM Symposium on Theory of Computing (STOC 2014), pages 146–153, 2014.

[KST16] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower

Bound for Depth Three Arithmetic Circuits. In Ioannis Chatzigiannakis, Michael

Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, Proceedings of

the 43rd International Colloquium on Automata, Languages and Programming

(ICALP 2016), volume 55 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2016. eccc:TR16-006.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial

Lower Bounds Against Low-Depth Algebraic Circuits. Electronic Colloquium on

Computational Complexity (ECCC), 28:81, 2021. eccc:TR21-081.

[MB18] Sajal Kumar Mukherjee and Sudip Bera. Combinatorial proofs of the Newton-

Girard and Chapman-Costas-Santos identities, 2018. Pre-print available at

arXiv:1807.11749.

[Mes89] Roy Meshulam. On two extremal matrix problems. Linear Algebra and its

Applications, 114:261–271, 1989.

[MP08] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic com-

plexity classes. J. Complexity, 24(1):16–38, 2008. Preliminary version in the 31st

Internationl Symposium on the Mathematical Foundations of Computer Science

(MFCS 2006).

[MR04] Thierry Mignon and Nicolas Ressayre. A quadratic bound for the deter-

minant and permanent problem. International Mathematics Research Notes,

2004(79):4241–4253, 2004. Available on citeseer:10.1.1.106.4910.

[MV97] Meena Mahajan and V. Vinay. A Combinatorial Algorithm for the Determinant.

In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 1997), pages 730–738, 1997. Available on citeseer:10.1.1.31.1673.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings

of the 23rd Annual ACM Symposium on Theory of Computing (STOC 1991),

pages 410–418, 1991. Available on citeseer:10.1.1.17.5067.

284

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal

of Computer and System Sciences, 49(2):149–167, 1994. Available on

citeseer:10.1.1.83.8416.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via par-

tial derivatives. Computational Complexity, 6(3):217–234, 1997. Available on

citeseer:10.1.1.90.2644.

[Pam85] P. Pamfilos. On the maximum rank of a tensor product. Acta Mathematica

Hungarica, 45(1):95–97, 1985.

[PSS18] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence

over positive characteristic: New criterion and applications to locally low-

algebraic-rank circuits. Computational Complexity, 27(4):617–670, 2018.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits

over a complete basis with logical addition. Mathematical notes of the Academy

of Sciences of the USSR, 41(4):333–338, 1987.

[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Com-

puting, 2(1):121–135, 2006. Preliminary version in the 45th Annual IEEE Sym-

posium on Foundations of Computer Science (FOCS 2004).

[Raz09] Ran Raz. Multi-Linear Formulas for Permanent and Determinant are of Super-

Polynomial Size. Journal of the ACM, 56(2), 2009. Preliminary version in the

36th Annual ACM Symposium on Theory of Computing (STOC 2004).

[Raz10a] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory

of Computing, 6(1):135–177, 2010. Preliminary version in the 40th Annual ACM

Symposium on Theory of Computing (STOC 2008).

[Raz10b] Ran Raz. How to fool people to work on circuit lower bounds. Invited talk at

Microsoft Research, 2010.

[Raz10c] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. In Proceedings

of the 42nd Annual ACM Symposium on Theory of Computing (STOC 2010),

pages 659–666, 2010.

285

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size

of syntactically multilinear arithmetic circuits. SIAM Journal of Computing,

38(4):1624–1647, 2008. Preliminary version in the 48th Annual IEEE Symposium

on Foundations of Computer Science (FOCS 2007).

[RY08] Ran Raz and Amir Yehudayoff. Balancing Syntactically Multilinear Arithmetic

Circuits. Computational Complexity, 17(4):515–535, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant

Depth Multilinear Circuits. Computational Complexity, 18(2):171–207, 2009.

Preliminary version in the 23rd Annual IEEE Conference on Computational

Complexity (CCC 2008).

[Rys63] Herbert J. Ryser. Combinatorial Mathematics. Mathematical Association of

America, 14, 1963.

[Sap14] Ramprasad Saptharishi. Recent Progress on Arithmetic Circuit Lower Bounds.

Bulletin of the EATCS, 114, 2014.

[Sax08] Nitin Saxena. Diagonal Circuit Identity Testing and Lower Bounds. In Proceed-

ings of the 35th International Colloquium on Automata, Languages and Pro-

gramming (ICALP 2008), pages 60–71, 2008.

[Ser18] Rocco A. Servedio, editor. Proceedings of the 33rd Annual Computational

Complexity Conference (CCC 2018), volume 102 of LIPIcs. Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik, 2018.

[Sri13] Srikanth Srinivasan. personal communication, 2013.

[SV14] Ramprasad Saptharishi and V. Vinay. An alternate proof of Tavenas’ depth

reduction. Unpublished manuscript, 2014.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of char-

acteristic zero. Computational Complexity, 10(1):1–27, 2001. Preliminary version

in the 14th Annual IEEE Conference on Computational Complexity (CCC 1999).

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent

results and open questions. Foundations and Trends in Theoretical Computer

Science, 5:207–388, March 2010.

286

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf.

Comput., 240:2–11, 2015. Preliminary version in the 38th Internationl Sympo-

sium on the Mathematical Foundations of Computer Science (MFCS 2013).

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11th

Annual ACM Symposium on Theory of Computing (STOC 1979), pages 249–

261, 1979.

[Val82] Leslie G. Valiant. Reducibility by algebraic projections. L’Enseignement Math-

ematique: Logic and Algorithmic, Geneva, 2:365–380, 1982.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel

Computation of Polynomials Using Few Processors. SIAM Journal of Comput-

ing, 12(4):641–644, 1983. Preliminary version in the 6th Internationl Symposium

on the Mathematical Foundations of Computer Science (MFCS 1981).

[vzG86] Joachim von zur Gathen. Permanent and Determinant. In Foundations of Com-

puter Science (FOCS), pages 398–401. IEEE Computer Society, 1986.

[Yeh18] Amir Yehudayoff. Separating Monotone VP and VNP. Electronic Colloquium

on Computational Complexity (ECCC), 2018. eccc:TR18-124.

287

