MAT223 Exam Practice Sheet

April 3, 2018

Please solve these problems on a seperate sheet of paper. No aids permitted.

- Question 1 (Lines and Planes) Find the equation ax + by = c of the line passing through the points: (3, 2) and (9, -3).
 - Find the vector equation $\vec{p} = \vec{v}_0 + t\vec{v}_1$ of the <u>line</u> passing through (1, 2, 3) in the direction $\vec{v} = (4, 5, 6)$.
 - Find the vector equation \$\vec{p}\$ = \$\vec{v}_0\$ + \$\vec{v}_1\$ + \$\vec{v}_2\$ for the plane passing through the points: (2, 2, 5), (3, 4, 5), and (4, 5, 7). Write this plane in the format \$ax + by + cz = d\$ as well.
 - Find two 2-dimensional planes in R⁴ that intersect in single point. Could two planes intersect in a point in R³?

Question 2 (Rotations) Find the 2×2 matrix R_{θ} representing a counterclockwise rotation of \mathbb{R}^2 by $\theta = \pi/6$ about the origin.

- What does R_{θ} do to the line $\vec{p} = \begin{bmatrix} 1 \\ -\sqrt{3} \end{bmatrix} t$?
- Does R_{θ} have any eigenvectors? Explain.

Question 3 Consider the system:

$$\begin{cases} x + Ay = -1\\ 5x - By = 6 \end{cases}$$

For what values of A and B does this system have: (i) a unique solution, (ii) no solutions, (iii) infinitely many solutions?

Question 4 Find all the solutions of $(\bar{z})^3 + 2 = 0$. If v = 1 + i and w = 1 - 2i find $\bar{v}w - iw^2$.

Question 5 Find the equation of a plane perpendicular to the line:

$$\vec{p} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} + t \begin{bmatrix} 1\\-2\\0 \end{bmatrix}$$

and containing the point p = (6, 6, 6).

Question 6 Let $\vec{e_1}$ and $\vec{e_2}$ be the standard basis vectors of \mathbb{R}^2 . Suppose T is a linear transformation such that: $T(\vec{e_1} + \vec{e_2}) = 2\vec{e_1}$ and $T(-\vec{e_1} + \vec{e_2}) = \vec{e_1} + 3\vec{e_2}$. Find the 2×2 matrix representing T.

Question 7 Express the vector $\vec{v} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}$ in the basis: $span\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\4\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\6 \end{bmatrix} \right\}$

Question 8 Consider the matrix:

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. Find a basis for the nullspace of A. What is the dimension of the nullspace?
- Find an orthogonal basis for the nullspace of A. Find an orthonormal basis for null(A).
- 3. What is the orthogonal complement of the nullspace of A?
- 4. Find a basis for the column space of A.
- 5. Find a basis for the row space of A. How is this related to (4)?
- 6. What is the rank of A? How is this related to (1)?

GOOD LUCK!