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Any question about the homework? Comments?

What is something neat you learned in another class?

News flash: Slides are online. Piazza is up!
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MAT 402: Friday September 25st 2020

Learning Objectives:

I Provide examples of finite subgroups of SO(3)

I Explain the geometric significance of orbits and stabilizers in R3.

I Distinguish between full and rotational symmetry groups
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The Special Orthogonal Group

Definition

The special orthogonal group SO(3) is the group of linear maps T : R3 → R3 which
preserve orthogonal bases and orientation. Alternatively, it is the group of rotations of
three dimensional space.

Task (5 min)

Is SO(3) commutative? Does ST = TS for all S ,T ∈ SO(3)?
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The Special Orthogonal Group

Task (2 min)

If T ∈ SO(3) \ {I3×3} acts on R3 then how many fixed points does T have?
Suppose, T acts on S2. How many fixed points does this action have?

Definition

We call the two fixed points of T acting on S2 the poles of T .
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The Special Orthogonal Group

Task (2 min)

Consider T =

cos(π/4) − sin(pi/4) 0
sin(π/4) cos(π/4) 0

0 0 1

. Let G = 〈T 〉 ⊆ SO(3).

What is G isomorphic to? What is Orb(1, 0, 0)T ? What is St(0, 0,±1)T ?

Question

What are some other finite subgroups of SO(3)?
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Fixed Point Counting

Lemma

If G+ ⊆ SO(3) then G+ maps poles to poles.

Proof.

Suppose that p ∈ S2 is a pole of T . Let S ∈ G+ be arbitrary.
pS is a fixed point of S−1TS because:

pS(S−1TS) = pTS = pS

Thus, pS is a pole.
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Fixed Point Counting

Theorem

If p is the pole of an element T ∈ G+ ⊂ SO(3) of maximal order k and |G+| = n
then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

G+/St(p) = {St(p)g1,St(p)g2, . . . ,St(p)gq}

where q = n/k . The elements {g1 . . . gq} must send p to distinct places. If pgi = pgj
for i 6= j then pgig

−1
j = p. Thus, gig

−1
j ∈ St(p) and the cosets St(p)gi and St(p)gj

are equal. Therefore, we conclude |Orb(p)| = q = n/k .

Task (5 min)

Discuss this proof in small groups. (What’s missing?)
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Square Bipyramid

Task (5 min)

Consider S = {(±1, 0, 0), (0,±1, 0), (0, 0,±2)}. What is the rotation group of S?
What are the poles of S? What are the orbits of the poles of S?
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