MAT 402: Classical Geometry

Platonic Solids

Coxeter

Homework #4 was extended to Saturday @ 11:59am. Any questions?

MAT 402: Friday November 13th 2020

Learning Objectives:

- Prove theorems about hyperbolic geodesics using euclidean geometry.
- Construct orthogonal circles.
- Construct geodesics in the hyperbolic plane.

The Poincaré Disk Model

Definition (7.2.1)

The Poincaré Disk model is $\mathbb{H} = \{(x, y) : x^2 + y^2 < 1\}$. We call the circle $\mathbb{A} = \{(x, y) : x^2 + y^2 = 1\}$ the absolute. The transformation group is:

 $\mathcal{M} = \{ \text{reflections in circles or lines perpendicular to } \mathbb{A} \}$

An Example of a Circle Orthogonal to $\mathbb A$

Task

Check that the points (0,0),
$$\left(\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}}\right)$$
, $(\sqrt{2},0)$ form a square.

Task

Check that the circle C centered at $(\sqrt{2}, 0)$ of radius r = 1 is orthogonal to A.

Finding the Image of a Segment

Task

Find the image of the segment from A = (0,0) to B = (1/10,0) under the hyperbolic isometry given by inverting in C a circle centered at $(\sqrt{2},0)$ of radius r = 1.

A Targeted Inversion

Task (7.1.3)

Given a point A in circle C centered at O there is a circle D orthogonal to C such that inversion in D takes A to O.

Key Facts about Inversion

Lemma

- ▶ We can map any A in C to O (previous slide).
- Given a line not through O, its inverse is a circle through O.
- Inversion preserves angles.

Pull up GeoGebra! https://www.geogebra.org/m/mk9preaj2,

The Construction of Hyperbolic Geodesics

Theorem $(7.1.4(i) \iff 7.3.2)$

Given $A, B \in \mathbb{H}^2$ there is a hyperbolic geodesic A and B which is orthogonal to A.