MAT 402: Classical Geometry

Platonic Solids

Coxeter

From Klein and Fricke - Theorie der Elliptischen Modulfunction (1927)

MAT 402: Friday November 13th 2020

Learning Objectives:

- Use complex coordinated to describe the upper-half plane model.
- Find fractional-linear transformations with specific properties.

The Complex Plane

Definition

The complex numbers are $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$ and $i^2 = -1$. We can write $a + bi = Re^{i\theta}$ with R > 0 and $0 \le \theta < 2\pi$ using $e^{i\theta} = \cos(\theta) + i\sin(\theta)$. The real part of a + bi is $\Re(a + bi) = a$ and the imaginary part is $\Im(a + bi) = b$.

Task

Describe the transformation $f(z) = zRe^{i\theta}$ geometrically.

The Riemann Sphere

Definition

The Riemann sphere or extended complex plane is: $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Definition

A fractional linear transformation is a map:

$$f(z) = \frac{az+b}{cz+d}$$

where $cb - ad \neq 0$ which is defined on $\mathbb{C} \setminus \{-d/c\}$. We extend it to $\overline{\mathbb{C}}$ by defining: $f(-d/c) = \infty$ and $f(\infty) = a/c$.

Task (Don't show this slide to the first years!)

What is
$$f(\infty)$$
 if $f(z) = \frac{2z+1}{3z-1}$?

The Group $\mathbb{R}\mathrm{M\ddot{o}b}$

Definition

The upper half-plane is
$$\mathbb{C}_+ = \{x + iy : y > 0\}$$
. The absolute is $\mathbb{A} = \{x + i0\}$.

Theorem

A fractional linear map of the form:

$$\frac{b\overline{z}+b}{b\overline{z}+d}$$
 or $\frac{a\overline{z}+b}{c\overline{z}+d}$

where $a, b, c, d \in \mathbb{R}$ and bc - ad > 0 preserves the upper-half plane. All such transformations form the group $\mathbb{R}M\ddot{o}b$ of real Möbius transformations.

Definition

The Poincaré Half-Plane model is $(\mathbb{C}_+ : \mathbb{R}M\ddot{o}b)$.

$\mathbb{R}\mathrm{M\ddot{o}b}$ Preserves the Half-Plane

Task

Show that $\mathbb{R}M\ddot{o}b$ preserves the upper-half plane. If $\Im(z) > 0$ and bc - ad > 0 then $\Im\left(\frac{az+b}{cz+d}\right) > 0$

$\mathbb{R}\mathrm{M\ddot{o}b}$ is a Group

Task

Show that $\mathbb{R}M\ddot{o}b$ is closed under composition: $f(z), g(z) \in \mathbb{R}M\ddot{o}b \Rightarrow f(g(z)) \in \mathbb{R}M\ddot{o}b$

Task

Show that $\mathbb{R}M\ddot{o}b$ is closed under inversion: $f(z) \in \mathbb{R}M\ddot{o}b \Rightarrow f^{-1}(z) \in \mathbb{R}M\ddot{o}b$

The Action of the $\mathbb{R}\mathrm{M\ddot{o}b}$

Task

Find a fractional linear transformation mapping $\varphi(0) = 1$, $\varphi(1) = \frac{1}{2}$, $\varphi(\infty) = 1$.

The Poincaré Half-Plane Model

Definition

Geodesics in $(\mathbb{C}_+ : \mathbb{R}M\ddot{o}b)$ are vertical lines or half-circles perpendicular to \mathbb{A} .

Task

Find an isometry $f \in \mathbb{R}M\ddot{o}b$ which fixes the geodesic $\gamma_1(t) = ti$ for $t \in \mathbb{R}$.

The Poincaré Half-Plane Model

Task

Find an isometry $f \in \mathbb{R}M\ddot{o}b$ which fixes the geodesic: $\gamma_2(t) = \cos(t) + i\sin(t)$ for $t \in (0, \pi)$.