MAT A29: Week 9 Winter 2025

Week 9: Riemann Sums

Remark: A Lot of Machinery

This week we begin our study of the area bounded by curves. The main tool we’ll develop is the theory of
Riemann sums. This material is a lot more technical than the course has been so far. If it is overwhelming
remember: people can learn this stuff. You can learn it to. You can always ask for help.

The plan is to calculate an area in a “machinery free” way and then build up the theory progressively.

Highschool: Calculate the area of the triangle bounded by the lines y =0, y = z, and = = 1.
Hard: Find the area bounded by y =0, y = 22, and = = 1. (Archimedes is famous for solving this.)
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MAT A29: Week 9 Winter 2025

Remark: Approximation!

The whole idea of Riemann sums rests on the idea of approximation. We take better and better approxi-
mations, until we get the actual area.

The triangle T' bounded by the lines y = 0, y = z, and z = 1 has base [0,1]. Approximate the area of

T by splitting the base inAo\two parts of equal length and erecting rectangles on bases. Write the left
end-point approximation' Ty, and the right end-point approximation/Tg|separately.
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Winter 2025

% Activity: Try It Yourself (5 min)

Repeat the previous example but split the base [0, §] of the triangle 7' in to three parts of equal length.
Calculate T, and T as before. What do you notice about the values 11, and Tr? ( |3y c,"\
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Remark: Why we need sequences.

Our approximations clearly depend on the number of pieces which we use to split up the triangle. We want
a compact way to describe “the behaviour of 77, and Ty with n parts”.
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MAT A29: Week 9 Winter 2025

A sequence 1z, is a list of real numbers with a value for each n in the naturals.
We also Writ z(n) as a function of n. We call z, a term of the sequence, and n is the index of zy.

.

Compute the first five terms n = 1,2, 3,4,5 of the following sequences:
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MAT A29: Week 9 Winter 2025

Suppose that we split the interval [0,1] in to n parts of equal length.
Write general formulas for 77 (n) and Tg(n).
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Remark: Why we need summation.

As we can see, our formulas for T7,(n) and Tg(n) involve a lot of “dot dot dots”. We want a compact way
to describe these summations so that we can use algebra and other tools to handle sequences.
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MAT A29: Week 9 Winter 2025

Given a sequence z, we can define its sequence of partial sums by: /4
A/ W Q\SW\O\

N
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The compact way of writing this involves sigma notation: )
p VA ) g A ()\AVV\VV\W\" Oln

) Wlﬂf —_ b
oK
L=vr O e S
We call k& the dummy variable or index of summation. The values k = a and k = b are the lower and

upper. espectively. Note: We may start the summation at kK = 1 or another other value. Other
common choices of dummy variable are 4 and n.
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Evaluate the first four terms N = 1,2, 3,4 of the following and guess formulas for Sy:
N

1. Sy = T
k
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MAT A29: Week 9 Winter 2025

N

An arithmetic progression 1'6 Tp=A+ n?) Find a formula for the partial sum Sy = E Zwk)
k=0
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A geometric series is a series of the form:

Sw =W—ZW

N+1 1
(Story: The case a =1 and r = 3 has a silly story about pouring two beers.)

Show that Sy = al I_
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Winter 2025

Find a formula for the following:

Story: There is a famous story about the mathematician Gauss. When he was a little child, his teacher

asked his whole class to add up the numbers from one to a hundred. In this notation, that question is
“Calculate S100.” Gauss, the prodigy, instantly responded: 5050.
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Setup a general formula for T7,(n) and Tr(n). Take the limit as n goes to infinity.

Note: We ought to get A = 1/2 by highschool geometry.
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MAT A29: Week 9 Winter 2025

% Activity: Class Discussion (5 min)

Look over our calculation of the area of 7. Here are some questions to consider:

e What’s the difference betwee and Tr(n)?

» What were the basic ingredients of the calculation?

o What really depended on the function y = z? ( \1L* %C\>
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The example of T has led us to develop the theory of Riemann sums. To be concrete, a Riemann sum is:

N
[{4 * — ” - & *
The signed area bounded by y = f(z) on [a, b] 1\}?00 g f(zp) Ay,

This definition has a lot of sub-parts. We name them now: \ hinst

e The end-points are a sequence zj, such that: a =zg <21 < -+ <2y =b. X
WO&I\’V

o Auxy is the length of the interval [z, Tg11]. (b v = E R Xl >

6’; is a sample pointv in the interval [z, Tg41].
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